Skip to main content
Log in

Entanglement Dynamics of Linear and Nonlinear Interaction of Two Two-Level Atoms with a Quantized Phase-Damped Field in the Dispersive Regime

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper we study the linear and nonlinear (intensity-dependent) interactions of two two-level atoms with a single-mode quantized field far from resonance, while the phase-damping effect is also taken into account. To find the analytical solution of the atom-field state vector corresponding to the considered model, after deducing the effective Hamiltonian we evaluate the time-dependent elements of the density operator using the master equation approach and superoperator method. Consequently, we are able to study the influences of the special nonlinearity function \(f (n) = \sqrt {n}\), the intensity of the initial coherent state field and the phase-damping parameter on the degree of entanglement of the whole system as well as the field and atom. It is shown that in the presence of damping, by passing time, the amount of entanglement of each subsystem with the rest of system, asymptotically reaches to its stationary and maximum value. Also, the nonlinear interaction does not have any effect on the entanglement of one of the atoms with the rest of system, but it changes the amplitude and time period of entanglement oscillations of the field and the other atom. Moreover, this may cause that, the degree of entanglement which may be low (high) at some moments of time becomes high (low) by entering the intensity-dependent function in the atom-field coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Notice that the state in (14) is indeed a coherent superposition of two atomic states which can be prepared via appropriate schemes [61,62,63].

  2. Also, a laser behaves as a “coherent state” radiation field far from threshold [32].

References

  1. Barnett, S.: Quantum Information. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  2. Piani, M., Watrous, J.: Phys. Rev. Lett. 114(6), 060404 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  3. Pakniat, R., Tavassoly, M.K., Zandi, M.H.: Commun. Theor. Phys. 65 (3), 266 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  4. Baghshahi, H.R., Tavassoly, M.K., Faghihi, M.J.: Int. J. Theor. Phys. 54 (8), 2839 (2015)

    Article  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  6. Sehati, N., Tavassoly, M.K.: Quant. Inf. Proc. 16(8), 193 (2017)

    Article  Google Scholar 

  7. Daneshmand, R., Tavassoly, M.K.: Eur. Phys. J. D 70(5), 101 (2016)

    Article  ADS  Google Scholar 

  8. Pakniat, R., Tavassoly, M.K., Zandi, M.H.: Opt. Commun. 382, 381 (2017)

    Article  ADS  Google Scholar 

  9. Pakniat, R., Tavassoly, M.K., Zandi, M.H.: Chin. Phys. B 25(10), 100303 (2016)

    Article  ADS  Google Scholar 

  10. Ghasemi, M., Tavassoly, M.K., Nourmandipour, A.: The European Physical Journal Plus 132(12), 531 (2017)

    Article  ADS  Google Scholar 

  11. Ye, L., Guo, G.C.: Phys. Rev. A 71(3), 034304 (2005)

    Article  ADS  Google Scholar 

  12. Li, S.S.: Int. J. Theor. Phys. 51(3), 724 (2012)

    Article  Google Scholar 

  13. Ekert, A.K.: Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  14. Jaynes, E.T., Cummings, F.W.: Proc. IEEE 51(1), 89 (1963)

    Article  Google Scholar 

  15. Shore, B.W., Knight, P.L.: J. Mod. Opt. 40(7), 1195 (1993)

    Article  ADS  Google Scholar 

  16. Solano, E., Agarwal, G.S., Walther, H.: Phys. Rev. Lett. 90(2), 027903 (2003)

    Article  ADS  Google Scholar 

  17. Daneshmand, R.N., Tavassoly, M.K.: Laser Phys. 25(5), 055203 (2015)

    Article  ADS  Google Scholar 

  18. Bužek, V., Jex, I., Brisudova, M.: Int. J. Mod. Phys. B 5(05), 797 (1991)

    Article  ADS  Google Scholar 

  19. Faghihi, M.J., Tavassoly, M.K.: J. Phys. B: At. Mol. Opt. Phys. 45(3), 035502 (2012)

    Article  ADS  Google Scholar 

  20. Faghihi, M.J., Tavassoly, M.K., Hooshmandasl, M.R.: J. Opt. Soc. Am. B 30(5), 1109 (2013)

    Article  ADS  Google Scholar 

  21. Baghshahi, H.R., Tavassoly, M.K., Behjat, A.: Commun. Theor. Phys. 62 (3), 430 (2014)

    Article  MathSciNet  Google Scholar 

  22. Faghihi, M.J., Tavassoly, M.K., Harouni, M.B.: Laser Phys. 24(4), 045202 (2014)

    Article  ADS  Google Scholar 

  23. Baghshahi, H.R., Tavassoly, M.K., Behjat, A.: Chin. Phys. B 23(7), 074203 (2014)

    Article  Google Scholar 

  24. Faraji, E., Tavassoly, M.K., Baghshahi, H.R.: Int. J. Theor. Phys. 55(5), 2573 (2016)

    Article  Google Scholar 

  25. Joshi, A., Lawande, S.V.: Phys. Rev. A 48(3), 2276 (1993)

    Article  ADS  Google Scholar 

  26. Miry, S.R., Tavassoly, M.K.: Phys. Scr. 85(3), 035404 (2012)

    Article  ADS  Google Scholar 

  27. de los Santos-Sánchez, O., González-Gutiérrez, C., Récamier, J.: J. Phys. B 49(16), 165503 (2016)

    Article  ADS  Google Scholar 

  28. de los Santos-Sánchez, O., Récamier, J.: J. Phys. B 45(1), 015502 (2011)

    Article  Google Scholar 

  29. Baghshahi, H.R., Tavassoly, M.K., Faghihi, M.J.: Laser Phys. 24(12), 125203 (2014)

    Article  ADS  Google Scholar 

  30. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  31. Razavy, M.: Classical and Quantum Dissipative Systems. World Scientific, Singapore (2005)

    MATH  Google Scholar 

  32. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  33. Puri, R., Agarwal, G.: Phys. Rev. A 35(8), 3433 (1987)

    Article  ADS  Google Scholar 

  34. Rustaee, N., Tavassoly, M.K., Daneshmand, R.: Int. J. Mod. Phys. B 30, 1750006 (2016)

    Google Scholar 

  35. Daneshmand, R., Tavassoly, M.K.: Laser Phys. 26(6), 065204 (2016)

    Article  ADS  Google Scholar 

  36. Baghshahi, H.R., Tavassoly, M.K., Behjat, A.: Eur. Phys. J. Plus 131(4), 80 (2016)

    Article  Google Scholar 

  37. Guo, Y.Q., Zhou, L., Song, H.S.: Int. J. Theor. Phys. 44(9), 1373 (2005)

    Article  Google Scholar 

  38. Englert, B.G., Naraschewski, M., Schenzle, A.: Phys. Rev. A 50(3), 2667 (1994)

    Article  ADS  Google Scholar 

  39. Gea-Banacloche, J.: Phys. Rev. A 47(3), 2221 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  40. Zhang, L.H., Li, G.X., Peng, J.S.: Act. Phys. Sin. 51, 541 (2002)

    Google Scholar 

  41. Kuang, L.M., Chen, X., Chen, G.H., Ge, M.L.: Phys. Rev. A 56(4), 3139 (1997)

    Article  ADS  Google Scholar 

  42. Rendell, R.W., Rajagopal, A.K.: Phys. Rev. A 67(6), 062110 (2003)

    Article  ADS  Google Scholar 

  43. Chuang, I.L., Yamamoto, Y.: Phys. Rev. A 55(1), 114 (1997)

    Article  ADS  Google Scholar 

  44. de Faria, J.G.P., Nemes, M.C.: Phys. Rev. A 59, 3918 (1999)

    Article  ADS  Google Scholar 

  45. Chun-Xian, L., Mao-Fa, F.: Chin. Phys. 12(8), 866 (2003)

    Article  ADS  Google Scholar 

  46. Roknizadeh, R., Tavassoly, M.K.: J. Phys. A Math. Gen. 37(21), 5649 (2004)

    Article  ADS  Google Scholar 

  47. Tavassoly, M.K.: Opt. Commun. 283, 5081 (2010)

    Article  ADS  Google Scholar 

  48. Honarasa, G.R., Tavassoly, M.K., Hatami, M.: Opt. Commun. 282(11), 2192 (2009)

    Article  ADS  Google Scholar 

  49. Man’ko, V.I., Marmo, G., Sudarshan, E.C.G., Zaccaria, F.: Phys. Scr. 55, 528 (1997)

    Article  ADS  Google Scholar 

  50. de Matos Filho, R., Vogel, W.: Phys. Rev. A 54, 4560 (1996)

    Article  ADS  Google Scholar 

  51. Plenio, M.B., Huelga, S.F.: Phys. Rev. Lett. 88, 197901 (2002)

    Article  ADS  Google Scholar 

  52. Daneshmand, R., Tavassoly, M.K.: Int. J. Theor. Phys. 56, 1218 (2017)

    Article  Google Scholar 

  53. Zhou, P., Hu, Z.L., Peng, J.S.: J. Mod. Opt. 39, 49 (1992)

    Article  ADS  Google Scholar 

  54. Moya-Cessa, H., Soto-Eguibar, F., Vargas-Martínez, J.M., Juárez-Amaro, R., Zúñiga-Segundo, A.: Phys. Rep. 513, 229 (2012)

    Article  ADS  Google Scholar 

  55. Buck, B., Sukumar, C.V.: Phys. Lett. A 81, 132 (1981)

    Article  ADS  Google Scholar 

  56. Schleich, W.P.: Quantum Optics in Phase Space. Wiley, New York (2011)

    MATH  Google Scholar 

  57. Juárez-Amaro, R., Vargas-Martínez, J.M., Moya-Cessa, H.: Laser Phys. 18, 344 (2008)

    Article  ADS  Google Scholar 

  58. Moya-Cessa, H.: Phys. Rep. 432(1), 1 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  59. Walls, D.F., Milburn, G.J.: Phys. Rev. A 31, 2403 (1985)

    Article  ADS  Google Scholar 

  60. Qing-Chun, Z., Shi-Ning, Z.: Chin. Phys. 14, 1147 (2005)

    Article  ADS  Google Scholar 

  61. Cirac, J., Zoller, P.: Phys. Rev. A 50(4), R2799 (1994)

    Article  ADS  Google Scholar 

  62. Li, J.: Int. J. Theor. Phys. 55(11), 4699 (2016)

    Article  Google Scholar 

  63. Xiao, J., Ren, Y.: . In: 2nd International Conference on Systems and Informatics (ICSAI), 2014, pp 665–669. IEEE (2014)

  64. Dehghani, A., Mojaveri, B., Shirin, S., Faseghandis, S.A.: Scientific reports, 6 (2016)

  65. Nourmandipour, A., Tavassoly, M.K., Bolorizadeh, M.: J. Opt. Soc. Am. B 33(8), 1723 (2016)

    Article  ADS  Google Scholar 

  66. Bougouffa, S., Ficek, Z.: Phys. Rev. A 93(6), 063848 (2016)

    Article  ADS  Google Scholar 

  67. Tahira, R., Ikram, M., Bougouffa, S., Zubairy, M.S.: J. Phys. B At. Mol. Opt. Phys. 43(3), 035502 (2010)

    Article  ADS  Google Scholar 

  68. Aloufi, K., Bougouffa, S., Ficek, Z.: Phys. Scr. 90(7), 074020 (2015)

    Article  ADS  Google Scholar 

  69. Bougouffa, S., Ficek, Z.: Phys. Rev. A 88(2), 022317 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. N. Yazdanpanah for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Tavassoly.

Appendix

Appendix

As previously mentioned, the Liouville operators may be obtained by expression \(L_{ij}=\langle i|\dot {{\rho }}(t)|j\rangle \), where subscripts i, j ∈{e, g} belong to degrees of freedom corresponding to atom 1. Here, \(\dot {{\rho }}(t)\) is governed by (8). The term L e e is defined as \(\langle e_{1}|\dot {\rho }|e_{1}\rangle \). With this definition, the second term of the first line in (8) is vanished due to the terms 〈e1|g1〉,〈g1|e1〉. Also, the second line in (8) is totally withdrawn due to the terms 〈e2|e1〉,〈e1|e2〉,〈g2|e1〉 and 〈e1|g2〉. Thus, we have

$$\begin{array}{@{}rcl@{}} L_{ee}&=&\dot{\rho}_{e_{1}e_{1}}(t)=\langle e_{1}|\dot{\rho}(t)|e_{1}\rangle\\ &=&-i{\Omega}_{1}\{(a^{\dagger} a + 1)f^{2}(a^{\dagger} a + 1)\langle e_{1}|\rho(t)|e_{1}\rangle-\langle e_{1}|\rho(t)|e_{1}\rangle(a^{\dagger} a + 1)f^{2}(a^{\dagger} a + 1) \\ &&+\gamma[2a^{\dagger} a\langle e_{1}|\rho(t)|e_{1}\rangle a^{\dagger} a-\langle e_{1}|\rho(t)|e_{1}\rangle a^{\dagger} aa^{\dagger} a-a^{\dagger} a\langle e_{1}|\rho(t)|e_{1}\rangle]\}. \end{array} $$
(33)

Now, considering superoperators MO = aaO and PO = Oaa and replacing the arbitrary operator O with ρ(t) which is corresponding to atom 1 degrees of freedom, the above operator can be rewritten as

$$L_{ee}\,=\,-i{\Omega}_{1}\! \left[(M\,+\,1)f^{2}(M\,+\,1)\rho_{ee}\,-\,(P\,+\,1)f^{2}(P\,+\,1)\rho_{ee}\!\right]+\gamma (2MP\rho_{ee}-P^{2}\rho_{ee}-M^{2}\rho_{ee}), $$

where, ρ e e = 〈e1|ρ(t)|e1〉. Then, the resulted expression can be rewritten as follows

$$L_{ee}=\left\{-i{\Omega}_{1} \left[(M + 1)f^{2}(M + 1)-(P + 1)f^{2}(P + 1)\right]+\gamma (2MP-P^{2}-M^{2})\right\}\rho_{ee}, $$

The other relations (17)–(19) may be obtained, similarly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavassoly, M.K., Daneshmand, R. & Rustaee, N. Entanglement Dynamics of Linear and Nonlinear Interaction of Two Two-Level Atoms with a Quantized Phase-Damped Field in the Dispersive Regime. Int J Theor Phys 57, 1645–1658 (2018). https://doi.org/10.1007/s10773-018-3691-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3691-9

Keywords

Navigation