Skip to main content
Log in

Effect of Preliminary Heating of a Polymeric Polytetrafluoroethylene Target on its Ablation by a Continuous CO2 Laser

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We study experimentally the effect of pre-heating polytetrafluoroethylene (PTFE) on its laser ablation rate from a continuous wave CO2 laser. The ablation rate and the fraction of fiber formed grow significantly as the initial temperature of the polymeric target increases from 292 to 683 K. The ablation rate obeys two exponential dependences on the temperature with different apparent activation energies for the high-temperature and low-temperature regimes. We find that a crossover temperature of 460 K correlates best with the temperature for sol–gel transformation in the bulk. The faster rates at higher temperature are due to the ability of the reactive species generated in the ablation process to react with more of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Scheirs, Modern Fluoropolymers: High Performance Polymers for Diverse Applications, John Wiley & Son Inc., New York (1997).

    Google Scholar 

  2. V. S. Ivanov, Radiation Chemistry of Polymers, VSP, Leiden (1992).

    Google Scholar 

  3. L. F. Ivanov, Yu. A. Olkhov, S. R. Allayarov, et al., High Energy Chem., 48, 117 (2014).

    Article  Google Scholar 

  4. Yu. A. Olkhov, S. R. Allayarov, E. M. Tolstopyatov, et al., High Energy Chem., 44, 63 (2010).

    Article  Google Scholar 

  5. D. B. Chrisey, A. Pique, R. A. McGill, et al., Chem. Rev., 103, 553 (2003).

    Article  Google Scholar 

  6. T. Lippert, in: A. Miotello and P. M. Ossi (Eds.), Laser-Surface Interactions for New Materials Production Tailoring Structure and Properties, Springer Series in Material Chemistry, Springer, Berlin (2009), Vol. 130, Ch. 7, p. 141.

  7. L. Urech and T. Lippert, in: N. S. Allen (ed), Photochemistry and Photophysics of Polymer Materials, John Wiley & Son Inc., New York (2010), Ch. 14, p. 541.

  8. M. Lorenz and M. S. Ramachandra Rao, J. Phys. D: Appl. Phys., 47, 030301 (2014).

    Article  ADS  Google Scholar 

  9. E. M. Tolstopyatov, L. F. Ivanov, P. N. Grakovich, and A. M. Krasovsky, in: C. R. Phipps (Ed.), High-Power Laser Ablation, Proc. SPIE, 3343, 1010 (1998).

  10. Y. Ueno, T. Fujii, and F. Kannari, Appl. Phys. Lett., 65, 1370 (1994).

    Article  ADS  Google Scholar 

  11. W. Jiang, M. G. Norton, L. Tsung, and J. T. Dickinson, J. Mater. Res., 10, 1038 (1995).

    Article  ADS  Google Scholar 

  12. M. G. Norton, W. Jiang, J. T. Dickinson, and K. W. Hipps, Appl. Surf. Sci., 96-98, 617 (1996).

  13. R. Schwodiauer, S. Bauer-Gogonea, S. Bauer, et al., Appl. Phys. Lett., 73, 2941 (1998).

    Article  ADS  Google Scholar 

  14. Yu. A. Olkhov, S. R. Allayarov, and D. A. Dixon, High Energy Chem., 48, 152 (2014).

    Article  Google Scholar 

  15. S. R. Allayarov, Yu. A. Olkhov, D. A. Dixon, and D. E. Nikles, High Energy Chem., 48, 104 (2014).

    Article  ADS  Google Scholar 

  16. Yu. A. Olkhov, S. R. Allayarov, and D. A. Dixon, High Energy Chem., 46, 369 (2012).

    Google Scholar 

  17. L. Mandelkern, Crystallization of Polymers, McGraw-Hill, New York (1964).

    Google Scholar 

  18. Yu. A. Olkhov, S. R. Allayarov, T. A. Konovalova, et al., J. Appl. Polym. Sci., 108, 2085 (2008).

    Article  Google Scholar 

  19. Yu. A. Olkhov and E. R. Badamshina, Int. J. Polym. Mat., 19, 117 (1993).

    Article  Google Scholar 

  20. I. I. Vorovich and Iu. A. Ustinov, J. Appl. Math. Mech., 23, 445 (1959).

    MathSciNet  Google Scholar 

  21. B. Jurkowski and Yu. A. Olkhov, Thermocchim. Acta, 414, 243 (2004).

    Article  Google Scholar 

  22. E. L. Gal’perin and D. J. Tsvankin, Vysokomol. Soedin., 18A, 2691 (1976).

    Google Scholar 

  23. Y. A. Olkhov and V. I. Irzhak, Vysokomol. Soedin., 40B, 1706 (1998).

    Google Scholar 

  24. Y. A. Olkhov, S. M. Baturin, and V. I. Irzhak, Vysokomol. Soedin., 38A, 849 (1996).

    Google Scholar 

  25. J. D. Ferry, High Elastic Properties of Polymers, John Wiley & Sons, New York (1980).

    Google Scholar 

  26. R. Simha and R. F. Boyer, J. Chem. Phys., 37, 1003 (1962).

    Article  ADS  Google Scholar 

  27. J. A. Panshin, S. G. Malkevich, and S. Dunaevskaja, Fluoroplastics [in Russian], Khimiya, Leningrad (1978).

  28. M. A. Bruk, A. V. Spirin, S. A. Khatipov, and N. V. Kozlova, High Energy Chem., 38, 239 (2004).

    Article  Google Scholar 

  29. A. A. Koptelov and O. F. Shlenskii, High Energy Chem., 36, 217 (2002).

    Article  Google Scholar 

  30. E. M. Tolstopyatov, J. Phys. D: Appl. Phys., 38, 1993 (2005).

    Article  ADS  Google Scholar 

  31. J. Pola, D. Tomanová, P. Schneider, et al., J. Fluor. Chem., 50, 309 (1993).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Dixon.

Additional information

Manuscript submitted by the authors in English on August 6, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolstopyatov, E.M., Grakovich, P.N., Ivanov, L.F. et al. Effect of Preliminary Heating of a Polymeric Polytetrafluoroethylene Target on its Ablation by a Continuous CO2 Laser. J Russ Laser Res 36, 485–494 (2015). https://doi.org/10.1007/s10946-015-9527-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-015-9527-7

Keywords

Navigation