Skip to main content
Log in

Preparation of Fe3O4/graphene oxide nanocomposites on activated carbon for As(V) removal from aqueous solutions

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this report, a new nanocomposite, magnetic graphene oxide on activated carbon (MGO/AC) material was synthesized by the co-precipitation method. This synthesized nanocomposite was employed for the removal of As(V) from an aqueous solution. The MGO/AC adsorbent was subjected to characterization using FE-SEM, XRD, EDX, BET, FTIR, and Raman spectra. These techniques determined the morphological structure and properties of nanocomposite materials. The adsorption process of MGO/AC is described by a pseudo-second-order model. At the equilibrium state, near room temperature, the MGO/AC material adsorbs As(V) with an equilibrium adsorption capacity of 14.25 mg/g. The maximum adsorption efficiency of As(V) was about 98% after 60 min with a specific surface area of 708.25 m2/g. Results also show the adsorption capacity of As(V) by the composite was higher than that of activated carbon and magnetic graphene oxide material. Therefore, the use of the MGO/AC adsorbent has demonstrated remarkable effectiveness in removing heavy metal ions and can be considered a promising and innovative material for water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availibility

Available on request

References

  1. S. Thatai, P. Khurana, J. Boken, S. Prasad, D. Kumar, Nanoparticles and core-shell nanocomposite based new generation water remediation materials and analytical techniques: A review. Microchem. J. 116, 62–76 (2014)

    CAS  Google Scholar 

  2. A. Allahbakhsh, F.N. Khodabadi, F.S. Hosseini, A.H. Haghighi, 3-Aminopropyl-triethoxysilane-functionalized rice husk and rice husk ash reinforced polyamide 6/graphene oxide sustainable nanocomposites. Eur. Polym. J. 94, 417–430 (2017)

    CAS  Google Scholar 

  3. P. Kanmani, J. Aravind, M. Kamaraj, P. Sureshbabu, S. Karthikeyan, Environmental applications of chitosan and cellulosic biopolymers: a comprehensive outlook. Bioresour. Technol. 242, 295–303 (2017)

    CAS  PubMed  Google Scholar 

  4. B. Li, Z. Chen, Y. Li, W. Yang, W. Wang, Visualization analysis of graphene and its composites for heavy metal wastewater applications. Environ. Sci. Pollut. Res. 26, 27752–27760 (2019)

    CAS  Google Scholar 

  5. C.J. Madadrang, H.Y. Kim, G. Gao, N. Wang, J. Zhu, H. Feng, M. Gorring, M.L. Kasner, S. Hou, Adsorption behavior of edta-graphene oxide for pb (ii) removal. ACS Appl. Mater. Interfaces 4(3), 1186–1193 (2012)

    CAS  PubMed  Google Scholar 

  6. P.A. Alaba, N.A. Oladoja, Y.M. Sani, O.B. Ayodele, I.Y. Mohammed, S.F. Olupinla, W.M.W. Daud, Insight into wastewater decontamination using polymeric adsorbents. J. Environ. Chem. Eng. 6(2), 1651–1672 (2018)

    CAS  Google Scholar 

  7. V. Kumar, K.-H. Kim, J.-W. Park, J. Hong, S. Kumar, Graphene and its nanocomposites as a platform for environmental applications. Chem. Eng. J. 315, 210–232 (2017)

    CAS  Google Scholar 

  8. X. Tang, H. Zheng, H. Teng, Y. Sun, J. Guo, W. Xie, Q. Yang, W. Chen, Chemical coagulation process for the removal of heavy metals from water: a review. Desalin. Water Treat. 57(4), 1733–1748 (2016)

    CAS  Google Scholar 

  9. V.B. Yadav, R. Gadi, S. Kalra, Clay based nanocomposites for removal of heavy metals from water: a review. J. Environ. Manag. 232, 803–817 (2019)

    CAS  Google Scholar 

  10. L. Joseph, B.-M. Jun, J.R. Flora, C.M. Park, Y. Yoon, Removal of heavy metals from water sources in the developing world using low-cost materials: a review. Chemosphere 229, 142–159 (2019)

    CAS  PubMed  Google Scholar 

  11. J.G. Dean, F.L. Bosqui, K.H. Lanouette, Removing heavy metals from waste water. Environ. Sci. Technol. 6(6), 518–522 (1972)

    CAS  Google Scholar 

  12. A. Zehra, M. Meena, P. Swapnil, N.A. Raytekar, R. Upadhya et al., Sustainable approaches to remove heavy metals from water. Microb. Biotechnol. 8, 127–146 (2020)

    Google Scholar 

  13. S.K. Raj, V. Yadav, G.R. Bhadu, R. Patidar, M. Kumar, V. Kulshrestha, Synthesis of highly fluorescent and water soluble graphene quantum dots for detection of heavy metal ions in aqueous media. Environ. Sci. Pollut. Res. 28, 46336–46342 (2021)

    CAS  Google Scholar 

  14. D.D. Mai, T.H. Bui, V. Huan Pham, T.H. Bui, T.K. Pham, D.C. Nguyen, T.L. Nguyen, Simultaneous adsorption of heavy metals on mesoporous reduced graphene oxide/\(\gamma\)-Fe2O3 nanocomposites. J. Porous Mater. 29(6), 1947–1956 (2022)

    CAS  Google Scholar 

  15. X. Guo, B. Du, Q. Wei, J. Yang, L. Hu, L. Yan, W. Xu, Synthesis of amino functionalized magnetic graphenes composite material and its application to remove cr (vi), pb (ii), hg (ii), cd (ii) and ni (ii) from contaminated water. J. Hazard. Mater. 278, 211–220 (2014)

    CAS  PubMed  Google Scholar 

  16. Y. Li, H. Yu, L. Liu, H. Yu, Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates. J. Hazard. Mater. 420, 126655 (2021)

    CAS  PubMed  Google Scholar 

  17. O. Hernandez-Ramirez, S.M. Holmes, Novel and modified materials for wastewater treatment applications. J. Mater. Chem 18(24), 2751–2761 (2008)

    CAS  Google Scholar 

  18. S. Adhikari, R. Swain, D. Sarkar, G. Madras, Wedge-like wo3 architectures for efficient electrochromism and photoelectrocatalytic activity towards water pollutants. Mol. Catal. 432, 76–87 (2017)

    CAS  Google Scholar 

  19. M.B. Tahir, T. Iqbal, H. Kiran, S. Afsheen, S. Muhammad, S.M. Siddeeg, N. Fatima, Role of RGO to improve the performance of bivo 4 nanostructures for efficient removal of heavy metals. Appl. Nanosci. 10, 1421–1432 (2020)

    CAS  Google Scholar 

  20. A. Chen, W. Liu, R.A. Soomro, Y. Wei, X. Zhu, N. Qiao, Y. Kang, B. Xu, Pva-integrated graphene oxide-attapulgite composite membrane for efficient removal of heavy metal contaminants. Environ. Sci. Pollut. Res. 29(56), 84410–84420 (2022)

    CAS  Google Scholar 

  21. G.K. Sarma, S. Sen Gupta, K.G. Bhattacharyya, Nanomaterials as versatile adsorbents for heavy metal ions in water: a review. Environ. Sci. Pollut. Res. 26, 6245–6278 (2019)

    CAS  Google Scholar 

  22. H. Zheng, Y. Gao, K. Zhu, Q. Wang, M. Wakeel, A. Wahid, N.S. Alharbi, C. Chen, Investigation of the adsorption mechanisms of pb (ii) and 1-naphthol by \(\beta\)-cyclodextrin modified graphene oxide nanosheets from aqueous solution. J. Colloid Interf. Sci. 530, 154–162 (2018)

    CAS  Google Scholar 

  23. X. Yi, F. Sun, Z. Han, F. Han, J. He, M. Ou, J. Gu, X. Xu, Graphene oxide encapsulated polyvinyl alcohol/sodium alginate hydrogel microspheres for cu (ii) and u (vi) removal. Ecotoxicol. Environ. Saf. 158, 309–318 (2018)

    CAS  PubMed  Google Scholar 

  24. B. Liao, W.Y. Sun, N. Guo, S.I. Ding, S.J. Su, Equilibriums and kinetics studies for adsorption of ni (ii) ion on chitosan and its triethylenetetramine derivative. Colloids Surf. A 32, 32–41 (2016)

    Google Scholar 

  25. S. Kim, C.M. Park, M. Jang, A. Son, N. Her, M. Yu, S. Snyder, D.-H. Kim, Y. Yoon, Aqueous removal of inorganic and organic contaminants by graphene-based nanoadsorbents: a review. Chemosphere 212, 1104–1124 (2018)

    CAS  PubMed  Google Scholar 

  26. B. Pan, B. Pan, W. Zhang, L. Lv, Q. Zhang, S. Zheng, Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem. Eng. J. 151(1–3), 19–29 (2009)

    CAS  Google Scholar 

  27. Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, C. Zhong, A versatile mof-based trap for heavy metal ion capture and dispersion. Nat. Commun. 9(1), 187 (2018)

    PubMed  PubMed Central  Google Scholar 

  28. E.A. Gendy, J. Ifthikar, J. Ali, D.T. Oyekunle, Z. Elkhlifia, I.I. Shahib, A.I. Khodair, Z. Chen, Removal of heavy metals by covalent organic frameworks (cofs): a review on its mechanism and adsorption properties. J. Environ. Chem. Eng. 9(4), 105687 (2021)

    CAS  Google Scholar 

  29. M.A. Yahya, Z. Al-Qodah, C.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renew. Sustain. Energy Rev. 46, 218–235 (2015)

    CAS  Google Scholar 

  30. V. Gomez, M. Larrechi, M. Callao, Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere 69(7), 1151–1158 (2007)

    CAS  PubMed  Google Scholar 

  31. S. Moosavi, C.W. Lai, S. Gan, G. Zamiri, O. Akbarzadeh Pivehzhani, M.R. Johan, Application of efficient magnetic particles and activated carbon for dye removal from wastewater. ACS Omega 5(33), 20684–20697 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. M. Adel, M.A. Ahmed, M.A. Elabiad, A.A. Mohamed, Removal of heavy metals and dyes from wastewater using graphene oxide-based nanomaterials: a critical review. Environ. Nanotechnol. Monit. Manag 18, 100719 (2022)

    CAS  Google Scholar 

  33. C. Bulin, R. Zheng, J. Song, J. Bao, G. Xin, B. Zhang, Magnetic graphene oxide-chitosan nanohybrid for efficient removal of aqueous hg (\(\pi\)) and the interaction mechanism. J. Mol. Liq. 370, 121050 (2023)

    CAS  Google Scholar 

  34. C. Bulin, T. Guo, Partially reduced graphene oxide as an efficient adsorbent towards ionic dyes and interaction mechanism. J. Mol. Liq. 391, 123436 (2023)

    CAS  Google Scholar 

  35. M.S. Gohr, A. Abd-Elhamid, A.A. El-Shanshory, H.M. Soliman, Adsorption of cationic dyes onto chemically modified activated carbon: kinetics and thermodynamic study. J. Mol. Liq. 346, 118227 (2022)

    Google Scholar 

  36. A. Abd-Elhamid, E.A. Kamoun, A.A. El-Shanshory, H.M. Soliman, H. Aly, Evaluation of graphene oxide-activated carbon as effective composite adsorbent toward the removal of cationic dyes: composite preparation, characterization and adsorption parameters. J. Mol. Liq. 279, 530–539 (2019)

    CAS  Google Scholar 

  37. J.M. Freire, Í, O. Moreira, A.M.D.M. França, L.T. Silva, L.P. Santos, S.L.S. Medeiros, I.F. Vasconcelos, A.R. Loiola, R.A. Antunes, R.F. Nascimento et al., Functionalized magnetic graphene oxide composites for selective toxic metal adsorption. Environ. Nanotechnol. Monit. Manag. 20, 100843 (2023)

    Google Scholar 

  38. A.A. Nayl, A.I. Abd-Elhamid, W.A. Arafa, I.M. Ahmed, A.A. El-Shanshory, M.A. Abu-Saied, H.M. Soliman, M.A. Abdelgawad, H.M. Ali, S. Bräse, Chitosan-functionalized-graphene oxide (go@ cs) beads as an effective adsorbent to remove cationic dye from wastewater. Polymers 14(19), 4236 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. C. Bulin, T. Guo, R. Zheng, Q. Xiong, Interaction mechanism of phytic acid functionalized graphene oxide with ionic dyes. Sep. Purif. Technol. 330, 125369 (2024)

    CAS  Google Scholar 

  40. C. Donga, S.B. Mishra, A.S. Abd-El-Aziz, A.K. Mishra, Advances in graphene-based magnetic and graphene-based/tio 2 nanoparticles in the removal of heavy metals and organic pollutants from industrial wastewater. J. Inorg. Organomet. Polym. Mater. 31, 463–480 (2021)

    CAS  Google Scholar 

  41. P.K. Boruah, P. Borthakur, M.R. Das, Magnetic metal/metal oxide nanoparticles and nanocomposite materials for water purification. In: Nanoscale Materials in Water Purification, pp. 473–503. Elsevier, (2019)

  42. T.S. Sreeprasad, S.M. Maliyekkal, K.P. Lisha, T. Pradeep, Reduced graphene oxide-metal/metal oxide composites: facile synthesis and application in water purification. J. Hazard. Mater. 186(1), 921–931 (2011)

    CAS  PubMed  Google Scholar 

  43. M.D. Dung, B.T. Hue, L.T.K. Phuong, L.T. Giang, L.V. Bau, N.T. Lan, Synthesis of rgo/\(\gamma\)-Fe2O3 nanocomposite for the removal of heavy metals from aqueous solutions. Int. J. Mater. Res. 114(3), 191–198 (2023)

    CAS  Google Scholar 

  44. M.D. Dung, T.T.V. Nga, N.T. Lan, N.K. Thanh, Adsorption behavior and mechanism of as (v) on magnetic fe3o4-graphene oxide (go) nanohybrid composite material. Anal. Sci. 38(2), 427–436 (2022)

    CAS  PubMed  Google Scholar 

  45. P. Dramou, F. Wang, Y. Sun, J. Zhang, P. Yang, D. Liu, H. He, Synthesis and characterization of superparamagnetic graphene oxide assembled halloysite composites for extraction of rutin. Appl. Clay Sci. 217, 106397 (2022)

    CAS  Google Scholar 

  46. T. Zeng, Y.-R. Ma, H.-Y. Niu, Y.-Q. Cai et al., A novel fe 3 o 4-graphene-au multifunctional nanocomposite: green synthesis and catalytic application. J. Mater. Chem. 22(35), 18658–18663 (2012)

    CAS  Google Scholar 

  47. V.H. Pham, T.V. Cuong, S.H. Hur, E. Oh, E.J. Kim, E.W. Shin, J.S. Chung, Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in n-methyl-2-pyrrolidone. J. Mater. Chem. 21(10), 3371–3377 (2011)

    CAS  Google Scholar 

  48. J. Shen, Y. Hu, M. Shi, N. Li, H. Ma, M. Ye, One step synthesis of graphene oxide- magnetic nanoparticle composite. J. Phys. Chem. C 114(3), 1498–1503 (2010)

    CAS  Google Scholar 

  49. Y.P. Yew, K. Shameli, M. Miyake, N.B.B.A. Khairudin, S.E.B. Mohamad, H. Hara, M.F.B.M. Nordin, K.X. Lee, An eco-friendly means of biosynthesis of superparamagnetic magnetite nanoparticles via marine polymer. IEEE Trans. Nanotechnol. 16(6), 1047–1052 (2017)

    CAS  Google Scholar 

  50. L.B. Salviano, T.M.D.S. Cardoso, G.C. Silva, M.S.S. Dantas, A.D.M. Ferreira, Microstructural assessment of magnetite nanoparticles (fe 3 o 4) obtained by chemical precipitation under different synthesis conditions. Mater. Res. 21, 89 (2018)

    Google Scholar 

  51. N.A. Zubir, C. Yacou, J. Motuzas, X. Zhang, J.C. Costa, Structural and functional investigation of graphene oxide-fe3o4 nanocomposites for the heterogeneous fenton-like reaction. Sci. Rep. 4(1), 4594 (2014)

    PubMed  PubMed Central  Google Scholar 

  52. A.K. Cordova Estrada, F. Cordova Lozano, R.A. Lara Díaz, Thermodynamics and kinetic studies for the adsorption process of methyl orange by magnetic activated carbons. Air Soil Water Res 14, 11786221211013336 (2021)

    Google Scholar 

  53. N. Sohrabi, R. Mohammadi, H.R. Ghassemzadeh, S.S.S. Heris, Equilibrium, kinetic and thermodynamic study of diazinon adsorption from water by clay/go/Fe3O4: modeling and optimization based on response surface methodology and artificial neural network. J. Mol. Liq. 328, 115384 (2021)

    CAS  Google Scholar 

  54. X. Yang, Y. Wan, Y. Zheng, F. He, Z. Yu, J. Huang, H. Wang, Y.S. Ok, Y. Jiang, B. Gao, Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem. Eng. J. 366, 608–621 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  55. C. Chuang, M. Fan, M. Xu, R. Brown, S. Sung, B. Saha, C. Huang, Adsorption of arsenic (v) by activated carbon prepared from oat hulls. Chemosphere 61(4), 478–483 (2005)

    CAS  PubMed  Google Scholar 

  56. J. Liu, L. Kong, X. Huang, M. Liu, L. Li, Removal of arsenic (v) from aqueous solutions using sulfur-doped Fe3O4 nanoparticles. RSC Adv. 8(71), 40804–40812 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  57. N. Thao, D. Nguyen, T.-T. Duong, N.T.K. Lien, D.Q. Tri, D.T.T. Linh, N. Lan et al., Effect of magnetic magnetite (fe3o4) nanoparticle size on arsenic (v) removal from water. J. Nanosci. Nanotechnol. 21(4), 2576–2581 (2021)

    CAS  PubMed  Google Scholar 

  58. H. Rashidi Nodeh, W.A. Wan Ibrahim, I. Ali, M.M. Sanagi, Development of magnetic graphene oxide adsorbent for the removal and preconcentration of as (iii) and as (v) species from environmental water samples. Environ. Sci. Pollut. Res. 23, 9759–9773 (2016)

    CAS  Google Scholar 

  59. Y. Zhao, H. Shi, Z. Du, J. Zhou, F. Yang, Removal of as (v) from aqueous solution using modified Fe3O4 nanoparticles. R. Soc. Open Sci. 10(1), 220988 (2023)

    CAS  PubMed  PubMed Central  Google Scholar 

  60. H.T. Ha, P.T. Phong, T.D. Minh, Synthesis of iron oxide nanoparticle functionalized activated carbon and its applications in arsenic adsorption. J. Anal. Methods Chem. 2021, 1–9 (2021)

    CAS  Google Scholar 

  61. C. Bulin, Combination mechanism of the ternary composite based on fe3o4-chitosan-graphene oxide prepared by solvothermal method. Int. J. Biol. Macromol. 231, 123337 (2023)

    CAS  PubMed  Google Scholar 

  62. C. Bulin, Adsorption mechanism and removal efficiency of magnetic graphene oxide-chitosan hybrid on aqueous zn (ii). Int. J. Biol. Macromol. 241, 124588 (2023)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.02-2017.357.

Funding

Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.02-2017.357

Author information

Authors and Affiliations

Authors

Contributions

THNN: Original draft, data collecting, experiment design, investigation, and data analysis. DDM: Data collecting, investigation, and data analysis. ASH and SHP: Methodology, Investigation, Writing—review & editing and TLN: Supervision and conceptualization of the manuscript.

Corresponding authors

Correspondence to Sy Hieu Pham or Thi Lan Nguyen.

Ethics declarations

Conflict of interest

All authors have read and agreed to the published version of the manuscript. All authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.H.N., Mai, D.D., Hoang, A.S. et al. Preparation of Fe3O4/graphene oxide nanocomposites on activated carbon for As(V) removal from aqueous solutions. J Porous Mater 31, 659–671 (2024). https://doi.org/10.1007/s10934-023-01542-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01542-z

Keywords

Navigation