Skip to main content

Advertisement

Log in

Renewable methanol from CO2 over Cu/Zn/Zr/Si oxide catalysts promoted with Mg, Ce, or La

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A series of multicomponent oxide catalysts (CuO/ZnO/MemOn/ZrO2/SiO2, with Me = Mg, Ce, or La) was synthesized through a one-pot soft-template approach and used for CO2 hydrogenation to methanol. In the case of the La-containing catalysts, additional samples were prepared with CuO contents in the range 40–60 wt%. The influence of the catalyst composition on the physicochemical properties as well as the effect on the catalytic performance were investigated. The fresh catalysts were characterized in terms of composition, structure, textural properties, dispersion of the oxidic phases, and reducibility. On the reduced samples, structural and acid–base properties were also investigated, as well as specific metal surface area and dispersion of Cu0. After in situ H2-treatment at 250 °C, the catalysts activity was tested in a bench scale plant at 250 °C and 3.0 MPa, using a gas hourly space velocity of 24,000 Ncm3 h−1 gcat−1 and a H2/CO2 molar ratio equal to 3. It was found that the production of methanol is particularly favored by the introduction of La2O3, the highest value of methanol space–time yield (413 \({\text{mg}}_{{{\text{CH}}_{3} {\text{OH}}}}\ {\text{h}}^{{ - {1}}} \;{\text{g}}_{{{\text{cat}}}}^{{ - {1}}}\)) being obtained on the CuO/ZnO/La2O3/ZrO2/SiO2 catalyst containing 50 wt% of copper oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.A. Atsbha, T. Yoon, P. Seongho, C.-J. Lee, J. CO2 Util. 44, 101413 (2021)

    Article  CAS  Google Scholar 

  2. A.A. Tountas, G.A. Ozin, M.M. Sain, Nat. Catal. 4, 934–942 (2021)

    Article  CAS  Google Scholar 

  3. G.A. Olah, Angew. Chem. Int. Ed. 52, 104–107 (2013)

    Article  CAS  Google Scholar 

  4. J. Sehested, J. Catal. 371, 368–375 (2019)

    Article  CAS  Google Scholar 

  5. I.U. Din, M.S. Shaharun, M.A. Alotaibi, A.I. Alharthi, A. Naeem, J. CO2 Util. 34, 20–33 (2019)

    Article  CAS  Google Scholar 

  6. C. Li, X. Yuan, K. Fujimoto, Appl. Catal. A 469, 306–311 (2014)

    Article  CAS  Google Scholar 

  7. B. Liang, J. Ma, X. Su, C. Yang, H. Duan, H. Zhou, S. Deng, L. Li, Y. Huang, Ind. Eng. Chem. Res. 58, 9030–9037 (2019)

    Article  CAS  Google Scholar 

  8. J. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang, T. Zhang, Chem. Soc. Rev. 49, 1385–1413 (2020)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. F. Sha, Z. Han, S. Tang, J. Wang, C. Li, ChemSusChem 13, 6160–6181 (2020)

    Article  CAS  PubMed  Google Scholar 

  10. X. Jiang, X. Nie, X. Guo, C. Song, J.G. Chen, Chem. Rev. 120, 7984–8034 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. M. Ren, Y. Zhang, X. Wang, H. Qiu, Catalysts 12, 403 (2022)

    Article  CAS  Google Scholar 

  12. S. Dang, H. Yang, P. Gao, H. Wang, X. Li, W. Wei, Y. Sun, Catal. Today 330, 61–75 (2019)

    Article  CAS  Google Scholar 

  13. N.J. Brown, J. Weiner, K. Hellgardt, M.S.P. Shaffer, C.K. Williams, Chem. Commun. 49, 11074–11076 (2013)

    Article  CAS  Google Scholar 

  14. C. Tisseraud, C. Comminges, T. Belin, H. Ahouari, A. Soualah, Y. Pouilloux, A. Le Valant, J. Catal. 330, 533–544 (2015)

    Article  CAS  Google Scholar 

  15. K. Li, J.G. Chen, ACS Catal. 9, 7840–7861 (2019)

    Article  CAS  Google Scholar 

  16. X. Guo, D. Mao, G. Lu, S. Wang, G. Wu, J. Mol. Catal. A 345, 60–68 (2011)

    Article  CAS  Google Scholar 

  17. H. Ban, C. Li, K. Asami, K. Fujimoto, Catal. Commun. 54, 50–54 (2014)

    Article  CAS  Google Scholar 

  18. S. Li, Y. Wang, B. Yang, L. Guo, Appl. Catal. A 571, 51–60 (2019)

    Article  CAS  Google Scholar 

  19. T. Phongamwong, U. Chantaprasertporn, T. Witoon, T. Numpilai, Y. Pooarporn, W. Limphirat, W. Donphai, P. Dittanet, M. Chareonpanich, J. Limtrakul, Chem Eng. J. 316, 692–703 (2017)

    Article  CAS  Google Scholar 

  20. J. Słoczyński, R. Grabowski, A. Kozłowska, P. Olszewski, M. Lachowska, J. Skrzypek, J. Stoch, Appl. Catal. A 249, 129–138 (2003)

    Article  Google Scholar 

  21. H. Ren, C.-H. Xu, H.-Y. Zhao, Y.-X. Wang, J. Liu, J.-Y. Liu, J. Ind. Eng. Chem. 28, 261–267 (2015)

    Article  CAS  Google Scholar 

  22. K. Suksumrit, S. Kleiber, S. Lux, Energies 16, 2973 (2023)

    Article  CAS  Google Scholar 

  23. X. Guo, D. Mao, S. Wang, G. Wu, G. Lu, Catal. Commun. 10, 1661–1664 (2009)

    Article  CAS  Google Scholar 

  24. X. Dong, F. Li, N. Zhao, F. Xiao, J. Wang, Y. Tan, Appl. Catal. B 191, 8–17 (2016)

    Article  CAS  Google Scholar 

  25. X. Guo, D. Mao, G. Lu, S. Wang, G. Wu, J. Catal. 271, 178–185 (2010)

    Article  CAS  Google Scholar 

  26. C. Paris, A. Karelovic, R. Manrique, S. Le Bras, F. Devred, V. Vykoukal, A. Styskalik, P. Eloy, D.P. Debecker, ChemSusChem 13, 6409–6417 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. J.Y. Liu, J.L. Shi, D.H. He, Q.J. Zhang, X.H. Wu, Y. Liang, Q.M. Zhu, Appl. Catal. A 218, 113–119 (2001)

    Article  CAS  Google Scholar 

  28. A. Karelovic, A. Bargibant, C. Fernández, P. Ruiz, Catal. Today 197, 109–118 (2012)

    Article  CAS  Google Scholar 

  29. G. Wang, Y. Zuo, M. Han, Appl. Catal. A 394, 281–286 (2011)

    Article  CAS  Google Scholar 

  30. K. Samson, M. Śliwa, R.P. Socha, K. Gora-Marek, D. Mucha, D. Rutkowska-Zbik, J.-F. Paul, M. Ruggiero-Mikołajczyk, R. Grabowski, J. Słoczynski, ACS Catal. 4, 3730–3741 (2014)

    Article  CAS  Google Scholar 

  31. Y. Cui, X. Lian, L. Xu, M. Chen, B. Yang, C.-E. Wu, W. Li, B. Huang, X. Hu, Materials 12, 276 (2019)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. D. Gu, F. Schüth, Chem. Soc. Rev. 43, 313–344 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. L. Qi, Q. Yu, Y. Dai, C.J. Tang, L.J. Liu, H.L. Zhang, F. Gao, L. Dong, Y. Chen, Appl. Catal. B 119–120, 308–320 (2012)

    Article  Google Scholar 

  34. B. Sun, X.L. Xu, G.W. Zhou, Adv. Mater. Res. 918, 12–16 (2014)

    Article  Google Scholar 

  35. C. Hu, X. Zhang, W. Li, Y. Yan, G. Xi, H. Yang, J. Li, H. Bai, J. Mater. Chem. A 2, 2040–2043 (2014)

    Article  CAS  Google Scholar 

  36. H. Liu, T. Liu, X. Dong, Z. Zhu, Mater. Lett. 134, 240–243 (2014)

    Article  CAS  Google Scholar 

  37. L. Li, D. Mao, J. Yu, X. Guo, J. Power Sources 279, 394–404 (2015)

    Article  ADS  CAS  Google Scholar 

  38. F.C.F. Marcos, L. Lin, L.E. Betancourt, S.D. Senanayake, J.A. Rodriguez, J.M. Assaf, R. Giudici, E.M. Assaf, J. CO2 Util. 41, 101215 (2020)

    Article  CAS  Google Scholar 

  39. Y. Wang, J. Ma, M. Luo, P. Fang, M. He, J. Rare Earths 25, 58–62 (2007)

    CAS  Google Scholar 

  40. M.F. Luo, J.M. Ma, J.Q. Lu, Y.P. Song, Y.J. Wang, J. Catal. 246, 52–59 (2007)

    Article  CAS  Google Scholar 

  41. H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd edn. (Wiley, New York, 1974), pp.687–703

    Google Scholar 

  42. F. Rouquerol, J. Rouquerol, K.S.W. Sing, P. Llewellyn, G. Maurin, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, 2nd edn. (Academic-Elsevier, Amsterdam, 2014), pp.12–13

    Google Scholar 

  43. A. Gervasini, S. Bennici, Appl. Catal. A 281, 199–205 (2005)

    Article  CAS  Google Scholar 

  44. K.D. Jung, O.S. Joo, S.H. Han, Catal. Lett. 68, 49–54 (2000)

    Article  CAS  Google Scholar 

  45. A.L. Borer, R. Prins, J. Catal. 144, 439–445 (1993)

    Article  CAS  Google Scholar 

  46. K. Taira, R. Murao, Energies 14, 7922 (2021)

    Article  CAS  Google Scholar 

  47. L. Atzori, E. Rombi, D. Meloni, R. Monaci, M.F. Sini, M.G. Cutrufello, J. Nanosci. Nanotechnol. 19, 3269–3276 (2019)

    Article  CAS  PubMed  Google Scholar 

  48. J. Yang, K. Hidajat, S. Kawi, J. Mater. Chem. 19, 292–298 (2009)

    Article  CAS  Google Scholar 

  49. L. Atzori, M.G. Cutrufello, D. Meloni, C. Cannas, D. Gazzoli, R. Monaci, M.F. Sini, E. Rombi, Catal. Today 299, 183–192 (2018)

    Article  CAS  Google Scholar 

  50. T. Witoon, T. Permsirivanich, W. Donphai, A. Jaree, M. Chareonpanich, Fuel Process. Technol. 116, 72–78 (2013)

    Article  CAS  Google Scholar 

  51. J. Słoczyński, R. Grabowski, A. Kozłowska, P.K. Olszewski, J. Stoch, Phys. Chem. Chem. Phys. 5, 4631–4640 (2003)

    Article  Google Scholar 

  52. D.M. Ruthven, Principles of Adsorption and Adsorption Processes (Wiley, New York, 1984)

    Google Scholar 

  53. T. Witoon, N. Kachaban, W. Donphai, P. Kidkhunthod, K. Faungnawakij, M. Chareonpanich, J. Limtrakul, Energy Convers. Manag. 118, 21–31 (2016)

    Article  CAS  Google Scholar 

  54. M. Mureddu, F. Ferrara, A. Pettinau, Appl. Catal. B 258, 117941 (2019)

    Article  CAS  Google Scholar 

  55. S.F.H. Tasfy, N.A.M. Zabidi, M.S. Shaharun, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 11, 108–113 (2017)

    Google Scholar 

  56. M. Mureddu, S. Lai, L. Atzori, E. Rombi, F. Ferrara, A. Pettinau, M.G. Cutrufello, Catalysts 11, 615 (2021)

    Article  CAS  Google Scholar 

  57. G. Bonura, F. Arena, G. Mezzatesta, C. Canilla, L. Spadaro, F. Frusteri, Catal. Today 171, 251–256 (2011)

    Article  CAS  Google Scholar 

  58. L. Angelo, K. Kobl, L.M. Martinez Tejada, Y. Zimmermann, K. Parkhomenko, C. R. Chim. 18, 250–260 (2015)

    Article  CAS  Google Scholar 

  59. C. Zhong, X. Guo, D. Mao, S. Wang, G. Wu, G. Lu, RSC Adv. 5, 52958 (2015)

    Article  ADS  CAS  Google Scholar 

  60. N.D. Nielsen, J. Thrane, A.D. Jensen, J.M. Christensen, Catal. Lett. 150, 1427–1433 (2020)

    Article  CAS  Google Scholar 

  61. G. Bonura, M. Cordaro, C. Cannilla, F. Arena, F. Frusteri, Appl. Catal. B 152–153, 152–161 (2014)

    Article  Google Scholar 

  62. P. Gao, F. Li, H. Zhan, N. Zhao, F. Xiao, W. Wei, L. Zhong, H. Wang, Y. Sun, J. Catal. 298, 51–60 (2013)

    Article  CAS  Google Scholar 

  63. X. Guo, D. Mao, G. Lu, S. Wang, G. Wu, Catal. Commun. 12, 1095–1098 (2011)

    Article  CAS  Google Scholar 

  64. J. Skrzypek, J. Słoczyński, S. Ledakowicz, Methanol Synthesis (Polish Scientific Publishers (PWN), Warszawa, 1994), p.54

    Google Scholar 

  65. P. Gao, F. Li, F.K. Xiao, N. Zhao, N.N. Sun, W. Wei, L.S. Zhong, Y.H. Sun, Catal. Sci. Technol. 2, 1447–1454 (2012)

    Article  CAS  Google Scholar 

  66. H.J. Zhan, F. Li, P. Gao, N. Zhao, F.K. Xiao, W. Wei, L.S. Zhong, Y.H. Sun, J. Power Sources 251, 113–121 (2014)

    Article  ADS  CAS  Google Scholar 

  67. O. Tursunov, L. Kustov, Z. Tilyabaev, J. Taiwan Inst. Chem. Eng. 78, 416–422 (2017)

    Article  CAS  Google Scholar 

  68. H. Ren, C.H. Xu, H.Y. Zhao, Y.X. Wang, J. Liu, J. Ind. Eng. Chem. 28, 261–267 (2015)

    Article  CAS  Google Scholar 

  69. W. Cai, P.R. de la Piscina, J. Toyir, N. Homs, Catal. Today 242, 193–199 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to Andrea Ardu and to the ‘Centro Servizi di Ateneo per la Ricerca (CeSAR)’ for the use of the TEM/EDX measurements performed with JEOL JEM 1400-PLUS. The catalytic tests have been performed by SOTACARBO within the Advanced Sustainable technologieS for Energy Transition, ASSET Project (CUP D43C22002400002), funded by the Regional Government of Sardinia.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [FF and ER]; Data curation: [LA, SL, MGC, and MM]; Formal analysis: [LA, SL, FF, MM, and ER]; Funding acquisition: [AP]; Investigation: [LA, SL, MGC, MM, and ER]; Methodology: [LA, MM, and ER]; Project administration: [FF and ER]; Resources: [MGC, FF, AP, and ER]; Supervision: [FF, AP, and ER]; Validation: [LA, SL, MGC, FF, MM, and ER]; Visualization: [LA, SL, MGC, MM, and ER]; Writing—original draft: [LA, SL, MGC, MM, and ER]; Writing—review and editing: [LA, SL, MGC, MM, and ER].

Corresponding authors

Correspondence to Mauro Mureddu or Elisabetta Rombi.

Ethics declarations

Conflict of interest

There are no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4413 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atzori, L., Lai, S., Cutrufello, M.G. et al. Renewable methanol from CO2 over Cu/Zn/Zr/Si oxide catalysts promoted with Mg, Ce, or La. J Porous Mater 31, 281–294 (2024). https://doi.org/10.1007/s10934-023-01511-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01511-6

Keywords

Navigation