Skip to main content
Log in

ROS/GSH dual-responsive selenium-containing mesoporous silica nanoparticles for drug delivery

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The targeted delivery of anti-tumor drugs to diseased sites is significant in cancer therapy. Herein, a novel redox-responsive 5-fluorouracil (5-FU) prodrug delivery system based on mesoporous silica nanoparticles was proposed, in which polyethyleneimine (PEI, a bulky gatekeeper) and (3-aminopropyl) triethoxysilane-functionalized MCM41 were conjugated to an identical 3,3-diselanediyldipropionic acid linker via a condensation reaction between the amino group and carboxyl functional group. The chemotherapeutic reagent 5-FU was filled into the pores of Se-MCM41 nanocarriers as a model drug. The nanoparticles of PEI-Se-MCM41@5-FU exhibited a uniform and spherical morphology of approximately 175 nm. Under high concentrations of reactive oxygen species or glutathione (GSH) environments, such as the tumor microenvironment, 5-FU was rapidly released from the PEI-Se-MCM41 nanocarrier owing to its high sensitivity to both oxidizing and reducing agents. The release performance clearly verified the feasibility of PEI-Se-MCM41@5-FU nanoparticles for H2O2/GSH-triggered 5-FU release, particularly under GSH conditions. Additionally, the cytotoxic effects of PEI-Se-MCM41 nanoparticles findings indicating that there was no significant cytotoxicity against CT-26 colon cancer cells after 24 h incubation. However, PEI-Se-MCM41@5-FU nanoparticles exhibited a pronounced inhibitory effect on CT-26 cells at a concentration of 150 μg mL−1. Furthermore, the intracellular drug delivery performance of nanocarriers were evaluated using confocal laser scanning microscopy (CLSM), which disclosed that the PEI-Se-MCM41@RhB was successfully endocytosed into the CT-26 cells and released the loaded 5-FU. The conclusion was further proved by FACS analysis, which indicated that PEI-Se-MCM41@RhB was more easily uptaken into the CT-26 cells than free RhB. The findings of in vivo and in vitro studies suggest that PEI-Se-MCM41@5-FU holds great potential for effective tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z.Q. Wang, Y.Q. Guo, Y. Fan, J.W. Chen, H. Wang, M.W. Shen, X.Y. Shi, Adv. Mater. 34, 2107009 (2022). https://doi.org/10.1002/adma.202107009

    Article  CAS  Google Scholar 

  2. B.Y. Chu, Y. Qu, X.L. He, Y. Hao, C.L. Yang, Y. Yang, D.R. Hu, F.F. Wang, Z.Y. Qian, Adv. Funct. Mater. 30, 2005918 (2020). https://doi.org/10.1002/adfm.202005918

    Article  CAS  Google Scholar 

  3. Y. Fan, W.Z. Tu, M.W. Shen, X.M. Chen, Y.S. Ning, J.J. Li, T.F. Chen, H. Wang, F.F. Yin, Y. Liu, Adv. Funct. Mater. 30, 1909285 (2020). https://doi.org/10.1002/adfm.201909285

    Article  CAS  Google Scholar 

  4. Y.Q. Guo, Y. Fan, G.M. Li, Z.Q. Wang, X.Y. Shi, M.W. Shen, A.C.S. Appl, Mater. Interfaces 13, 55815–55826 (2021). https://doi.org/10.1021/acsami.1c15282

    Article  CAS  Google Scholar 

  5. B. Burtness, K. Harrington, R. Greil, D. Soulières, M. Tahara, G.D. De Castro Jr, A. Psyrri, N. Basté, P. Neupane, Å. Bratland, Lancet 394, 1915–1928 (2019). https://doi.org/10.1016/S0140-6736(19)32591-7

    Article  CAS  PubMed  Google Scholar 

  6. Y. Pommier, Nat. Rev. Cancer 6, 789–802 (2006). https://doi.org/10.1038/nrc1977

    Article  CAS  PubMed  Google Scholar 

  7. F. De Felice, D. Musio, V. Terenzi, V. Valentini, A. Cassoni, M. Tombolini, M. De Vincentiis, V. Tombolini, Radiat. Oncol. 9, 1–7 (2014). https://doi.org/10.1186/s13014-014-0263-x

    Article  Google Scholar 

  8. R.Y.H. Tan, C.S. Lee, M.R. Pichika, S.F. Cheng, K. Y. Lam 14, 1672 (2022). https://doi.org/10.3390/polym14091672

    Article  CAS  Google Scholar 

  9. R. Guillet-Nicolas, A. Popat, J.L. Bridot, G. Monteith, S.Z. Qiao, F. Kleitz, Angew. Chem. Int. Ed. 52, 2318–2322 (2013). https://doi.org/10.1002/anie.201208840

    Article  CAS  Google Scholar 

  10. M. Vallet-Regí, F. Balas, D. Arcos, Angew. Chem. Int. Ed. 46, 7548–7558 (2007). https://doi.org/10.1002/anie.200604488

    Article  CAS  Google Scholar 

  11. Q.L. Tang, Y. Xu, D. Wu, Y.H. Sun, Chem. Lett. 35, 474–475 (2006). https://doi.org/10.1246/cl.2006.474

    Article  CAS  Google Scholar 

  12. Y.B. Jeon, S. Nagappan, X.H. Li, J.H. Lee, L.Y. Shi, S. Yuan, W.K. Lee, C.S. Ha, A.C.S. Appl, Mater. Interfaces 13, 6615–6630 (2021). https://doi.org/10.1021/acsami.0c20401

    Article  CAS  Google Scholar 

  13. Z.C. Ma, W.T. Xu, Q.G. Wang, Q. Zhou, J. Zhou, Chem. Eng. J. 435, 135081 (2022). https://doi.org/10.1016/j.cej.2022.135081

    Article  CAS  Google Scholar 

  14. Y.D. Wang, Z.L. Feng, X.F. Bai, Fuel 315, 123236 (2022). https://doi.org/10.1016/j.fuel.2022.123236

    Article  CAS  Google Scholar 

  15. X. Li, Q.R.B. Xie, J.X. Zhang, W.L. Xia, H.C. Gu, Biomaterials 32, 9546–9556 (2011). https://doi.org/10.1016/j.biomaterials.2011.08.068

    Article  CAS  PubMed  Google Scholar 

  16. Q.J. He, J.L. Shi, Adv. Mater. 26, 391–411 (2014). https://doi.org/10.1002/adma.201303123

    Article  CAS  PubMed  Google Scholar 

  17. G. Singh, K. Ramadass, P. Sooriyakumar, O. Hettithanthri, M. Vithange, N. Bolan, E. Tavakkoli, L.V. Van Zwieten, A. Vinu, J Control Release 343, 187–206 (2022). https://doi.org/10.1016/j.jconrel.2022.01.036

    Article  CAS  PubMed  Google Scholar 

  18. H. Meng, M. Xue, T. Xia, Z.X. Ji, D.Y. Tarn, J.I. Zink, A.E. Nel, ACS Nano 5, 4131–4144 (2011). https://doi.org/10.1021/nn200809t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. K.H. Bae, H.J. Chung, T.G. Park, Mol. Cells 31, 295–302 (2011). https://doi.org/10.1007/s10059-011-0051-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. X. Du, L. Xiong, S. Dai, S.Z. Qiao, Adv. Healthc. Mater. 4, 771–781 (2015). https://doi.org/10.1002/adhm.201400726

    Article  CAS  PubMed  Google Scholar 

  21. S. Park, M.H. Jung, Y.S. Lee, J.H. Bae, S.H. Kim, C.S. Ha, Mater. Des. 184, 108187 (2019). https://doi.org/10.1016/j.matdes.2019.108187

    Article  CAS  Google Scholar 

  22. G. Lohiya, D.S. Katti, Carbohydr. Polym. 277, 118822 (2022). https://doi.org/10.1016/j.carbpol.2021.118822

    Article  CAS  PubMed  Google Scholar 

  23. W. Yin, W.D. Ke, W.J. Chen, L.C. Xi, Q.H. Zhou, J.F. Mukerabigwi, Z.S. Ge, Biomaterials 195, 63–74 (2019). https://doi.org/10.1016/j.biomaterials.2018.12.032

    Article  CAS  PubMed  Google Scholar 

  24. W.J. Zhang, Y.Z. Yan, S. Nagappan, S.S. He, C.S. Ha, Y.S. Jin, J. Macromol. Sci. A 58, 860–871 (2021). https://doi.org/10.1080/10601325.2021.1964368

    Article  CAS  Google Scholar 

  25. C. Chen, Y.Y. Li, X.P. Yu, Q.L. Jiang, X.H. Xu, Q. Yang, Z.Y. Qian, Chin Chem Lett 29, 1609–1612 (2018). https://doi.org/10.1016/j.cclet.2018.02.010

    Article  CAS  Google Scholar 

  26. S.J. Pan, T.Y. Li, Y.Z. Tan, H.P. Xu, Biomaterials 280, 121321 (2022). https://doi.org/10.1016/j.biomaterials.2021.121321

    Article  CAS  PubMed  Google Scholar 

  27. M. Karimi, A. Ghasemi, P.S. Zangabad, R. Rahighi, S.M. Basri, H. Mirshekari, M. Amiri, Z. Pishabad, A. Aslani, M. Bozorgomid, Chem. Soc. Rev. 45, 1457–1501 (2016). https://doi.org/10.1039/C5CS00798D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Q. Yin, J.N. Shen, Z.W. Zhang, H.J. Yu, Y.P. Li, Adv. Drug Deliv. Rev. 65, 1699–1715 (2013). https://doi.org/10.1016/j.addr.2013.04.011

    Article  CAS  PubMed  Google Scholar 

  29. L. Zhou, H. Wang, Y.P. Li, Theranostics 8, 1059 (2018). https://doi.org/10.7150/thno.22679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. W. Lei, C.S. Sun, T.Y. Jiang, Y.K. Gao, Y. Yang, Q.F. Zhao, S.L. Wang, Mater. Sci. Eng. C 105, 110103 (2019). https://doi.org/10.1016/j.msec.2019.110103

    Article  CAS  Google Scholar 

  31. Q.Q. Xu, Y.Q. Yang, J.Y. Lu, Y.Z. Lin, S.P. Feng, X.Y. Luo, Q.F. Zhao, Coord Chem Rev 469, 214687 (2022). https://doi.org/10.1016/j.ccr.2022.214687

    Article  CAS  Google Scholar 

  32. K.L. Wang, J.Y. Lu, J.L. Li, Y.L. Gao, Y.L. Mao, Q.F. Zhao, S.L. Wang, J Control Release 339, 445–472 (2021). https://doi.org/10.1016/j.jconrel.2021.10.005

    Article  CAS  PubMed  Google Scholar 

  33. C.G. Qian, P.J. Feng, J.C. Yu, Y.L. Chen, Q.Y. Hu, W.J. Sun, X.Z. Xiao, X.L. Hu, A. Bellotti, Q.D. Shen, Angew. Chem. Int. Ed. 129, 2632–2637 (2017). https://doi.org/10.1002/ange.201611783

    Article  Google Scholar 

  34. S.D. Zhai, X.L. Hu, Y.J. Hu, B.Y. Wu, D. Xing, Biomaterials 121, 41–54 (2017). https://doi.org/10.1016/j.biomaterials.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  35. B.W. Chen, Y.J. Zhang, R.X. Ran, B. Wang, F.R. Qin, T. Zhang, G.Y. Wan, H.L. Chen, Y.S. Wang, Polym. Chem. 10, 4746–4757 (2019). https://doi.org/10.1039/C9PY00575G

    Article  CAS  Google Scholar 

  36. P. Kuppusamy, H.Q. Li, G. Ilangovan, A.J. Cardounel, J.L. Zweier, K. Yamada, M. Krishna, J.B. Mitchell, Cancer Res. 62, 307–312 (2002)

    CAS  PubMed  Google Scholar 

  37. T. Xia, M. Kovochich, M. Liong, H. Meng, S. Kabehie, S. George, J.I. Zink, A.E. Nel, ACS Nano 3, 3273–3286 (2009). https://doi.org/10.1021/nn900918w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. H.W. Duan, S.M. Nie, J. Am. Chem. Soc. 129, 3333–3338 (2007). https://doi.org/10.1021/ja068158s

    Article  CAS  PubMed  Google Scholar 

  39. G.L. Zhang, J.L. Gao, J.C. Qian, L.L. Zhang, K. Zheng, K. Zhong, D.Q. Cai, X. Zhang, Z.Y. Wu, A.C.S. Appl, Mater. Interfaces 7, 14192–14200 (2015). https://doi.org/10.1021/acsami.5b04294

    Article  CAS  Google Scholar 

  40. J. Liu, L. Zhao, L. Shi, Y. Yuan, D.A. Fu, Z.L. Ye, Q.L. Li, Y. Deng, X.X. Liu, Q.Y. Lv, Z. Wand, A.C.S. Appl, Mater. Interfaces 12, 54343–54355 (2020). https://doi.org/10.1021/acsami.0c13852

    Article  CAS  Google Scholar 

  41. N.P. Gabrielson, D.W. Pack, Biomacromol 7, 2427–2435 (2006). https://doi.org/10.1021/bm060300u

    Article  CAS  Google Scholar 

  42. Y.K. Buchman, E. Lellouche, S. Zigdon, M. Bechor, S. Michaeli, J.P. Lellouche, Bioconjug. Chem. 24, 2076–2087 (2013). https://doi.org/10.1021/bc4004316

    Article  CAS  PubMed  Google Scholar 

  43. C.H. Lee, L.W. Lo, C.Y. Mou, C.S. Yang, Adv. Funct. Mater. 18, 3283–3292 (2008). https://doi.org/10.1002/adfm.200800521

    Article  CAS  Google Scholar 

  44. R. Nechikkattu, S.S. Park, C.S. Ha, Microporous Mesoporous Mater. 279, 117–127 (2019). https://doi.org/10.1016/j.micromeso.2018.12.022

    Article  CAS  Google Scholar 

  45. D. Shao, M.Q. Li, Z. Wang, X. Zheng, Y.H. Lao, Z.M. Chang, F. Zhang, M.M. Lu, J. Yue, H.Z. Hu, Adv. Mater. 30, 1801198 (2018). https://doi.org/10.1002/adma.201801198

    Article  CAS  Google Scholar 

  46. Q.S. Pan, T.T. Chen, C.P. Nie, J.T. Yi, C. Liu, Y.L. Hu, X. Chu, A.C.S. Appl, Mater. Interfaces 10, 33070–33077 (2018). https://doi.org/10.1021/acsami.8b13393

    Article  CAS  Google Scholar 

  47. X.D. She, L.J. Chen, L. Velleman, C.P. Li, H.J. Zhu, C.Z. He, L.X. Kong, J. Colloid Interface Sci. 445, 151–160 (2015). https://doi.org/10.1016/j.jcis.2014.12.053

    Article  CAS  PubMed  Google Scholar 

  48. R. Starosta, A. Bykowska, A. Kyzioł, M. Płotek, M. Florek, J. Król, M. Jeżowska-Bojczuk, Chem Biol Drug Des 82, 579–586 (2013). https://doi.org/10.1111/cbdd.12187

    Article  CAS  PubMed  Google Scholar 

  49. J.S. Li, X.Y. Miao, Y.X. Hao, J.Y. Zhao, X.Y. Sun, L.J. Wang, J. Colloid Interface Sci. 318, 309–314 (2008). https://doi.org/10.1016/j.jcis.2007.09.093

    Article  CAS  PubMed  Google Scholar 

  50. J. Pokhrel, N. Bhoria, S. Anastasiou, T. Tsoufis, D. Gournis, G. Romanos, G.N. Karanikolos, Microporous Mesoporous Mater. 267, 53–67 (2018). https://doi.org/10.1016/j.micromeso.2018.03.012

    Article  CAS  Google Scholar 

  51. J.H. Peng, F.M. Chen, Y.L. Liu, F. Zhang, L. Cao, Q.N. You, D. Yang, Z.M. Chang, M.F. Ge, L. Li, W.F. Dong, Theranostics 12, 1756 (2022). https://doi.org/10.7150/thno.68756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. K. Zhang, E.H. Yuan, L.L. Xu, Q.S. Xue, C. Luo, B. Albela, L. Bonneviot, Eur. J. Inorg. Chem. 2012, 4183–4189 (2012). https://doi.org/10.1002/ejic.201200316

    Article  CAS  Google Scholar 

  53. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. 1992 Beck, nature 359, 710–712. https://www.nature.com/articles/359710a0

  54. S. Rohani, G. Mohammadi Ziarani, A. Badiei, A. Ziarati, M. Jafari, A. Shayesteh, Appl Organomet Chem (2018). https://doi.org/10.1002/aoc.4397

    Article  Google Scholar 

  55. M. Abbasian, F. Mahmoodzadeh, J. Polym. Mater. 32, 527 (2015). https://www.researchgate.net/profile/Mojtaba-Abbasian/publication/293047060

  56. A.D. Oliveira, C.A.G. Beatrice, F.R. Passador, L.A. Pessan, AIP Conf Proc 1914, 030020 (2017). https://doi.org/10.1063/1.5016707

    Article  CAS  Google Scholar 

  57. D.T. Ma, Y.L. Li, J.B. Yang, H.W. Mi, S. Luo, L.B. Deng, C.Y. Yan, P.X. Zhang, Z.Q. Lin, X.Z. Ren, Nano Energy 43, 317–325 (2018). https://doi.org/10.1016/j.nanoen.2017.11.042

    Article  CAS  Google Scholar 

  58. X.T. Cao, Y.H. Kim, J.M. Park, K.T. Lim, Eur. Polym. J. 78, 264–273 (2016). https://doi.org/10.1016/j.eurpolymj.2016.03.039

    Article  CAS  Google Scholar 

  59. S.A. Salma, M.P. Patil, D.W. Kim, C.M.Q. Le, B.H. Ahn, G.D. Kim, K.T. Lim, Polym. Chem. 9, 4813–4823 (2018). https://doi.org/10.1039/C8PY00961A

    Article  CAS  Google Scholar 

  60. Y.S. Birhan, B.Z. Hailemeskel, T.W. Mekonnen, E.Y. Hanurry, H.F. Darge, A.T. Andrgie, H.Y. Chou, J.Y. Lai, G.H. Hsiue, H.C. Tsai, Int. J. Pharm. 567, 118486 (2019). https://doi.org/10.1016/j.ijpharm.2019.118486

    Article  CAS  PubMed  Google Scholar 

  61. B. Urban-Klein, S. Werth, S. Abuharbeid, F. Czubayko, A. Aigner, Gene Ther. 12, 461–466 (2005). https://doi.org/10.1038/sj.gt.3302425

    Article  CAS  PubMed  Google Scholar 

  62. J.C. Yang, S.J. Pan, S.Q. Gao, T.Y. Li, H.P. Xu, Biomaterials 271, 120721 (2021). https://doi.org/10.1016/j.biomaterials.2021.120721

    Article  CAS  PubMed  Google Scholar 

  63. X.L. Zhang, X.Z. Su, Y.R. Zheng, S.J. Hu, L. Shi, F.Y. Gao, P.P. Yang, Z.Z. Niu, Z.Z. Wu, S. Qin, Angew. Chem. Int. Ed. 60, 26922–26931 (2021). https://doi.org/10.1002/anie.202111075

    Article  CAS  Google Scholar 

  64. Y.F. Yuan, R.H. Zhou, T. Li, S. Qu, H. Bai, J.W. Liang, X.X. Cai, B. Guo, Cell Prolif. 54, e13008 (2021). https://doi.org/10.1111/cpr.13008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. R. Pecora, J Nanopart Res 2, 123–131 (2000). https://doi.org/10.1023/A:1010067107182

    Article  CAS  Google Scholar 

  66. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  67. A. Mohan, J. Peter, L. Rout, A.M. Thomas, S. Nagappan, S. Parambadath, W.J. Zhang, M. Selvaraj, C.S. Ha, Colloids Surf. A Physicochem. Eng. Asp. 611, 125846 (2021). https://doi.org/10.1016/j.colsurfa.2020.125846

    Article  CAS  Google Scholar 

  68. S. Ravi, S.Q. Zhang, Y.R. Lee, K.K. Kang, J.M. Kim, J.W. Ahn, W.S. Ahn, J Ind Eng Chem 67, 210–218 (2018). https://doi.org/10.1016/j.jiec.2018.06.031

    Article  CAS  Google Scholar 

  69. G.D. Park, J.S. Cho, J.K. Lee, Y.C. Kang, Sci. Rep. 6, 1–10 (2016). https://doi.org/10.1038/srep22432

    Article  CAS  Google Scholar 

  70. W. Liu, Y.C. Zhu, F. Wang, X. Li, X.J. Liu, J.J. Pang, W.S. Pan, Royal Soc. Open Sci. 5, 181027 (2018). https://doi.org/10.1098/rsos.181027

    Article  CAS  Google Scholar 

  71. P.R.S. Reddy, K.M. Rao, K.K. Rao, Y. Shchipunov, C.S. Ha, Macromol Res 22, 832–842 (2014). https://doi.org/10.1007/s13233-014-2117-7

    Article  CAS  Google Scholar 

  72. R.W. Korsmeyer, N.A. Peppas, J Membr Sci 9, 211–227 (1981). https://doi.org/10.1016/S0376-7388(00)80265-3

    Article  CAS  Google Scholar 

  73. M.R. Abukhadra, N.M. Refay, A.M. El-Sherbeeny, M.A. El-Meligy, ACS Omega 5, 11745–11755 (2020). https://doi.org/10.1021/acsomega.0c01078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. J. Siepmann, N.A. Peppas, Int J Pharm 418, 6–12 (2011). https://doi.org/10.1016/j.ijpharm.2011.03.051

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT, Korea (2021R1I1A3060098, NRF-2021R1I1A3059777 and Brain Korea 21 Plus Program (4199990414196)) and by the Korea Institute for Advancement of Technology funded by the Ministry of Trade, Industry and Energy (P0017531).

Funding

National Research Foundation of Korea, 2021R1I1A3060098,NRF-2021R1I1A3059777 and Brain Korea 21 Plus Program (4199990414196), Korea Institute for Advancement of Technology, P0017531

Author information

Authors and Affiliations

Authors

Contributions

WJZ carried out main experimental works and wrote the manuscript text, AB performed cell cytotoxicity experiments. SSP did project administration, YZY and NJ helped measurements and discussion. IC and SKA supervised this work, IKP helped interpreted biological data. CSH reviewed and edited this manuscript as well as supervised and got fund for this work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to In-Kyu Park or Chang-Sik Ha.

Ethics declarations

Conflict of interest

Authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2203 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, WJ., Babu, A., Yan, YZ. et al. ROS/GSH dual-responsive selenium-containing mesoporous silica nanoparticles for drug delivery. J Porous Mater 30, 1469–1484 (2023). https://doi.org/10.1007/s10934-023-01430-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01430-6

Keywords

Navigation