Skip to main content

Advertisement

Log in

Biomass-derived inherently doped multifunctional hierarchically porous carbon as an efficient electrode material for high-performance supercapacitors

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Energy storage devices capable of delivering high energy and power are crucial in fulfilling the ever-increasing energy demands. Supercapacitors (SCs) are electrochemical energy storage devices for next-generation applications, exhibiting high energy and power output with ultra-long cycle life. Biomass-derived porous carbon materials are extensively used for the realization of many green energy storage solutions owing to their low cost, abundance, and sustainable characteristics. This study explored an inherently doped hierarchically porous carbon (HPC) derived from an aromatic root, vetiver for SC application. HPC with innately doped iron oxide nanoparticles and heteroatoms (nitrogen and oxygen) was prepared using a facile chemical activation method. The influence of pyrolysis temperature on HPC's morphology, pore structure, and energy storage characteristics was investigated. HPC prepared at 800 °C (HPC-800 °C) demonstrated a tubular morphology with a large specific surface area of 1879 m2 g−1 and a total pore volume of 0.91 cm3 g−1. The tubular morphology in combination with inherent functionalities in HPC augments the transport of ions and electrons within the carbonaceous matrix. Reaping these benefits, the as-fabricated symmetric SC using HPC-800 °C electrodes exhibited a maximum energy density of 67.8 W h kg−1 and power density of 15,000 W kg−1 with ~ 88% capacitance retention after 10,000 cycles. This study opens a scope for developing green supercapacitors for next-generation energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Lemian, F. Bode, Battery-supercapacitor energy storage systems for electrical vehicles: a review. Energies 15, 5683 (2022)

    CAS  Google Scholar 

  2. Z. Yang, H. Huang, F. Lin, Sustainable electric vehicle batteries for a sustainable world: perspectives on battery cathodes, environment, supply chain, manufacturing, life cycle, and policy. Adv. Energy Mater. 12, 2200383 (2022)

    CAS  Google Scholar 

  3. A.K. Worku, D.W. Ayele, N.G. Habtu, B.T. Admasu, G. Alemayehu, B.Z. Taye et al., Energy storage technologies; recent advances, challenges, and prospectives, in Planning of Hybrid Renewable Energy Systems, Electric Vehicles and Microgrid: Modeling, Control and Optimization. ed. by A.K. Bohre, P. Chaturvedi, M.L. Kolhe, S.N. Singh (Springer, Singapore, 2022), pp.125–150

    Google Scholar 

  4. R.T. Yadlapalli, R.R. Alla, R. Kandipati, A. Kotapati, Super capacitors for energy storage: progress, applications and challenges. J. Energy Storage 49, 104194 (2022)

    Google Scholar 

  5. A.G. Olabi, Q. Abbas, A. Al Makky, M.A. Abdelkareem, Supercapacitors as next generation energy storage devices: properties and applications. Energy 248, 123617 (2022)

    CAS  Google Scholar 

  6. M.B.F. Ahsan, S. Mekhilef, T.K. Soon, M.B. Mubin, P. Shrivastava, M. Seyedmahmoudian, Lithium-ion battery and supercapacitor-based hybrid energy storage system for electric vehicle applications: a review. Int. J. Energy Res. (2022). https://doi.org/10.1002/er.8439

    Article  Google Scholar 

  7. S. Liu, L. Wei, H. Wang, Review on reliability of supercapacitors in energy storage applications. Appl. Energy 278, 115436 (2020)

    CAS  Google Scholar 

  8. M.Z. Iqbal, U. Aziz, Supercapattery: Merging of battery-supercapacitor electrodes for hybrid energy storage devices. J. Energy Storage 46, 103823 (2022)

    Google Scholar 

  9. F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014)

    PubMed  Google Scholar 

  10. Y. Wang, L. Zhang, H. Hou, W. Xu, G. Duan, S. He et al., Recent progress in carbon-based materials for supercapacitor electrodes: a review. J. Mater. Sci. 56, 173–200 (2021)

    CAS  Google Scholar 

  11. G. Jiang, R.A. Senthil, Y. Sun, T.R. Kumar, J. Pan, Recent progress on porous carbon and its derivatives from plants as advanced electrode materials for supercapacitors. J. Power Sources 520, 230886 (2022)

    CAS  Google Scholar 

  12. S.M. Benoy, M. Pandey, D. Bhattacharjya, B.K. Saikia, Recent trends in supercapacitor-battery hybrid energy storage devices based on carbon materials. J. Energy Storage 52, 104938 (2022)

    Google Scholar 

  13. L. Sun, Y. Gong, D. Li, C. Pan, Biomass-derived porous carbon materials: synthesis, designing, and applications for supercapacitors. Green Chem. 24, 3864–3894 (2022)

    CAS  Google Scholar 

  14. P. Manasa, S. Sambasivam, F. Ran, Recent progress on biomass waste derived activated carbon electrode materials for supercapacitors applications—a review. J. Energy Storage 54, 105290 (2022)

    Google Scholar 

  15. R. Chakraborty, K. Vilya, M. Pradhan, A.K. Nayak, Recent advancement of biomass-derived porous carbon based materials for energy and environmental remediation applications. J. Mater. Chem. A 10, 6965–7005 (2022)

    CAS  Google Scholar 

  16. M. Zhang, J. Zhang, S. Ran, W. Sun, Z. Zhu, Biomass-derived sustainable carbon materials in energy conversion and storage applications: status and opportunities. A mini review. Electrochem. Commun. 138, 107283 (2022)

    CAS  Google Scholar 

  17. K. Karthikeyan, S. Amaresh, S.N. Lee, X. Sun, V. Aravindan, Y.-G. Lee et al., Construction of high-energy-density supercapacitors from pine-cone-derived high-surface-area carbons. Chemsuschem 7, 1435–1442 (2014)

    CAS  PubMed  Google Scholar 

  18. Y.-Y. Wang, B.-H. Hou, H.-Y. Lü, C.-L. Lü, X.-L. Wu, Hierarchically porous N-doped carbon nanosheets derived from grapefruit peels for high-performance supercapacitors. ChemSelect 1, 1441–1447 (2016)

    CAS  Google Scholar 

  19. S. Bai, G. Tan, X. Li, Q. Zhao, Y. Meng, Y. Wang et al., Pumpkin-derived porous carbon for supercapacitors with high performance. Chemistry 11(12), 1828–1836 (2016)

    CAS  Google Scholar 

  20. M. Karnan, K. Subramani, N. Sudhan, N. Ilayaraja, M. Sathish, Aloe vera derived activated high-surface-area carbon for flexible and high-energy supercapacitors. ACS Appl. Mater. Interfaces 8, 35191–35202 (2016)

    CAS  PubMed  Google Scholar 

  21. X. Liu, S. Zhang, X. Wen, X. Chen, Y. Wen, X. Shi et al., High yield conversion of biowaste coffee grounds into hierarchical porous carbon for superior capacitive energy storage. Sci. Rep. 10, 3518 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. L. Jiang, S.O. Han, M. Pirie, H.H. Kim, Y.-H. Seong, H. Kim et al., Seaweed biomass waste-derived carbon as an electrode material for supercapacitor. Energy Environ. 32, 1117–1129 (2021)

    CAS  Google Scholar 

  23. E.Y.L. Teo, L. Muniandy, E.-P. Ng, F. Adam, A.R. Mohamed, R. Jose et al., High surface area activated carbon from rice husk as a high-performance supercapacitor electrode. Electrochim. Acta 192, 110–119 (2016)

    CAS  Google Scholar 

  24. R. Thangavel, K. Kaliyappan, H.V. Ramasamy, X. Sun, Y.-S. Lee, Engineering the pores of biomass-derived carbon: insights for achieving ultrahigh stability at high power in high-energy supercapacitors. Chemsuschem 10, 2805–2815 (2017)

    CAS  PubMed  Google Scholar 

  25. M. Biswal, A. Banerjee, M. Deo, S. Ogale, From dead leaves to high energy density supercapacitors. Energy Environ. Sci. 6, 1249–1259 (2013)

    CAS  Google Scholar 

  26. W. Sun, S.M. Lipka, C. Swartz, D. Williams, F. Yang, Hemp-derived activated carbons for supercapacitors. Carbon 103, 181–192 (2016)

    CAS  Google Scholar 

  27. K. Subramani, N. Sudhan, M. Karnan, M. Sathish, Orange peel derived activated carbon for fabrication of high-energy and high-rate supercapacitors. ChemSelect 2, 11384–11392 (2017)

    CAS  Google Scholar 

  28. Z. Heidarinejad, M.H. Dehghani, M. Heidari, G. Javedan, I. Ali, M. Sillanpää, Methods for preparation and activation of activated carbon: a review. Environ. Chem. Lett. 18, 393–415 (2020)

    CAS  Google Scholar 

  29. Bai X, Quan B, Kang C, Zhang X, Zheng Y, Song J, et al, Activated carbon from tea residue as efficient absorbents for environmental pollutant removal from wastewater. Biomass Convers. Bioref. 2022.

  30. S.B. Patwardhan, S. Pandit, P. Kumar Gupta, N. Kumar Jha, J. Rawat, H.C. Joshi et al., Recent advances in the application of biochar in microbial electrochemical cells. Fuel 311, 122501 (2022)

    CAS  Google Scholar 

  31. D. Chenthamara, S.G. Ramakrishnan, B. Robert, P. Murugan, S. Subramaniam, Zinc chloride activated carbon from Pleurotus floridanus biomass for piroxicam adsorption. J. Chem. Technol. Biotechnol. 97, 719–730 (2022)

    CAS  Google Scholar 

  32. G. Nazir, A. Rehman, S. Hussain, M. Ikram, S.-J. Park, Supercapacitor performance based on nitrogen and sulfur co-doped hierarchically porous carbons: superior rate capability and cycle stability. Int. J. Energy Res. 46, 15602–15616 (2022)

    CAS  Google Scholar 

  33. X. Luo, S. Chen, T. Hu, Y. Chen, F. Li, Renewable biomass-derived carbons for electrochemical capacitor applications. SusMat 1, 211–240 (2021)

    CAS  Google Scholar 

  34. S. Oshunsanya, O. Aliku, Vetiver grass: a tool for sustainable agriculture. IntechOpen (2017). https://doi.org/10.5772/intechopen.69303

    Article  Google Scholar 

  35. B.O. Otunola, M.P. Aghoghovwia, M. Thwala, O.O. Ololade, Heavy metal phytoremediation potential of vetiver grass and indian mustard update on enhancements and research opportunities. Water Air Soil Pollut. 233, 154 (2022)

    CAS  Google Scholar 

  36. Y. Wang, M. Zhang, X. Shen, H. Wang, H. Wang, K. Xia et al., Biomass-derived carbon materials: controllable preparation and versatile applications. Small 17, 2008079 (2021)

    CAS  Google Scholar 

  37. P. Álvarez, R. Santamaría, C. Blanco, M. Granda, Thermal degradation of lignocellulosic materials treated with several acids. J. Anal. Appl. Pyrol. 74, 337–343 (2005)

    Google Scholar 

  38. X. He, P. Ling, M. Yu, X. Wang, X. Zhang, M. Zheng, Rice husk-derived porous carbons with high capacitance by ZnCl2 activation for supercapacitors. Electrochim. Acta 105, 635–641 (2013)

    CAS  Google Scholar 

  39. S. Li, H. Yang, T. Fletcher, M. Dong, Model for the evolution of pore structure in a lignite particle during pyrolysis. Energy Fuels 29, 5322–5333 (2015)

    CAS  Google Scholar 

  40. J. López, F. González, F. Bonilla, G. Zambrano, M. Gomez, Synthesis and characterization of Fe3O4 magnetic nanofluid. Revista Latinoamericana de Metalurgia y Materiales 30, 60–66 (2010)

    Google Scholar 

  41. J. Hayashi, A. Kazehaya, K. Muroyama, A.P. Watkinson, Preparation of activated carbon from lignin by chemical activation. Carbon 38, 1873–1878 (2000)

    CAS  Google Scholar 

  42. Y. Li, L. Wang, B. Gao, X. Li, Q. Cai, Q. Li et al., Hierarchical porous carbon materials derived from self-template bamboo leaves for lithium-sulfur batteries. Electrochim. Acta 229, 352–360 (2017)

    CAS  Google Scholar 

  43. M. Shang, J. Zhang, X. Liu, Y. Liu, S. Guo, S. Yu et al., N, S self-doped hollow-sphere porous carbon derived from puffball spores for high performance supercapacitors. Appl. Surf. Sci. 542, 148697 (2021)

    CAS  Google Scholar 

  44. L.-F. Cai, J.-M. Zhan, J. Liang, L. Yang, J. Yin, Structural control of a novel hierarchical porous carbon material and its adsorption properties. Sci. Rep. 12, 3118 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. B. Petrovic, M. Gorbounov, S.S. Masoudi, Influence of surface modification on selective CO2 adsorption: a technical review on mechanisms and methods. Microporous Mesoporous Mater. 312, 110751 (2021)

    CAS  Google Scholar 

  46. K.R. Hallam, J.E. Darnbrough, C. Paraskevoulakos, P.J. Heard, T.J. Marrow, P.E.J. Flewitt, Measurements by x-ray diffraction of the temperature dependence of lattice parameter and crystallite size for isostatically-pressed graphite. Carbon Trends 4, 100071 (2021)

    CAS  Google Scholar 

  47. Z.-Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45, 1686–1695 (2007)

    CAS  Google Scholar 

  48. R. Ali, Z. Aslam, R.A. Shawabkeh, A. Asghar, I.A. Hussein, BET, FTIR, and RAMAN characterizations of activated carbon from waste oil fly ash. Turk. J. Chem. 44, 279–295 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. B. Petrovic, M. Gorbounov, S. Soltani, Influence of surface modification on selective CO2 adsorption: a technical review on mechanisms and methods. Microporous Mesoporous Mater. 312, 110751 (2020)

    Google Scholar 

  50. J. Chen, L. Jiang, W. Wang, P. Wang, X. Li, H. Ren et al., Facile construction of highly porous carbon materials derived from porous aromatic frameworks for greenhouse gas adsorption and separation. Microporous Mesoporous Mater. 326, 111385 (2021)

    CAS  Google Scholar 

  51. K. Mondal, H. Lorethova, E. Hippo, T. Wiltowski, S.B. Lalvani, Reduction of iron oxide in carbon monoxide atmosphere—reaction controlled kinetics. Fuel Process. Technol. 86, 33–47 (2004)

    CAS  Google Scholar 

  52. M.W. Ahmad, S. Anand, B. Dey, A. Fatima, D.J. Yang, A. Choudhury, N/P/O/S heteroatom-doped porous carbon nanofiber mats derived from a polyacrylonitrile/l-cysteine/P2O5 precursor for flexible electrochemical supercapacitors. ACS Appl. Energy Mater. 4, 12177–12190 (2021)

    CAS  Google Scholar 

  53. M. Ayiania, M. Smith, A.J.R. Hensley, L. Scudiero, J.-S. McEwen, M. Garcia-Perez, Deconvoluting the XPS spectra for nitrogen-doped chars: an analysis from first principles. Carbon 162, 528–544 (2020)

    CAS  Google Scholar 

  54. M. Skorupska, P. Kamedulski, J. Lukaszewicz, A. Ilnicka, The improvement of energy storage performance by sucrose-derived carbon foams via incorporating nitrogen atoms. Nanomaterials 11, 760 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  55. A.C. Lim, H.S. Jadhav, J.G. Seo, Electron transport shuttle mechanism via an Fe–N–C bond derived from a conjugated microporous polymer for a supercapacitor. Dalton Trans. 47, 852–858 (2018)

    CAS  PubMed  Google Scholar 

  56. Z. Zhu, Z. Xu, The rational design of biomass-derived carbon materials towards next-generation energy storage: a review. Renew. Sustain. Energy Rev. 134, 110308 (2020)

    CAS  Google Scholar 

  57. A. Pal, S. Ghosh, D. Singha, M. Nandi, Morphology controlled synthesis of heteroatom-doped spherical porous carbon particles retaining high specific capacitance at high current density. ACS Appl. Energy Mater. 4, 10810–10825 (2021)

    CAS  Google Scholar 

  58. T.S. Mathis, N. Kurra, X. Wang, D. Pinto, P. Simon, Y. Gogotsi, Energy storage data reporting in perspective-guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 9, 1902007 (2019)

    CAS  Google Scholar 

  59. R. Chulliyote, H. Hareendrakrishnakumar, M.G. Joseph, Template free one pot synthesis of heteroatom doped porous Carbon Electrodes for High performance symmetric supercapacitor. Electrochim. Acta 337, 135698 (2020)

    CAS  Google Scholar 

  60. S. Sardana, K. Aggarwal, P. Siwach, L. Gaba, A.S. Maan, K. Singh, A. Ohlan, Hierarchical three dimensional polyaniline/N-doped graphene nanocomposite hydrogel for energy storage applications. Energy Storage (2022). https://doi.org/10.1002/est2.328

    Article  Google Scholar 

  61. M. Shaker, A.A.S. Ghazvini, W. Cao, R. Riahifar, Q. Ge, Biomass-derived porous carbons as supercapacitor electrodes—a review. New Carbon Mater. 36, 546–572 (2021)

    CAS  Google Scholar 

  62. Q. Dou, H.S. Park, Perspective on high-energy carbon-based supercapacitors. Energy Environ. Mater. 3, 286–305 (2020)

    CAS  Google Scholar 

  63. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015)

    CAS  PubMed  Google Scholar 

  64. B. Wang, L. Ji, Y. Yu, N. Wang, J. Wang, J. Zhao, A simple and universal method for preparing N, S co-doped biomass derived carbon with superior performance in supercapacitors. Electrochim. Acta 309, 34–43 (2019)

    CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial support from the Indian Institute of Space Science and Technology (IIST) Thiruvananthapuram.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this study. Material preparation, and analysis were performed by RC. The interpretation of the results and the first draft of the manuscript was written by RC, HH, SKK, and MGJ. All authors reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mary Gladis Joseph.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2029 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chulliyote, R., Hareendrakrishnakumar, H., Kunhi Kannan, S. et al. Biomass-derived inherently doped multifunctional hierarchically porous carbon as an efficient electrode material for high-performance supercapacitors. J Porous Mater 30, 1129–1141 (2023). https://doi.org/10.1007/s10934-022-01408-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01408-w

Keywords

Navigation