Skip to main content
Log in

Effects of structure design on resilience and acoustic absorption properties of porous flexible-foam based perforated composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this paper, perforated composite panel was combined with porous and resonance structures to investigate the influence on acoustic absorption and resilient properties. The perforated composite panel was fabricated based on highdensity flexible-foam via perforating and reinforcing with laminated hybrid nonwoven fabric. Effect of aperture size (AS) (ranging from 3 mm to 6 mm), perforation ratio (PR) (5 %, 10 %, 15 % and 20 %) and perforation depth (PD) (25 %, 50 %, 75 % and 100 %) on the compressive hardness, rebound resilience and acoustic absorption properties was explored. Multiply hybrid nonwoven fabric which was fabricated with low-melting point polyester (LMPET), flame-retardant polyester (FRPET) and recycled Kevlar fibers was utilized to reinforce the flexible composites and improve the acoustic property. Nonwoven that was fabricated with entangled LMPET fibers had porous structures which could reinforce the flexible foam and enhance the acoustic absorption properties. The result revealed that the continuity and supporting of porous flexible foam had directly influence the compressive hardness. The maximum hardness of the flexible-foam based perforated composites reached 420 N. The rebound resilience result showed that the sample had high resilient structure and the resilience was up to 48 %. The perforated flexible composites plate (PFP) with 4 mm-AS performed the highest acoustic absorption coefficient at 0.9. The acoustic absorption coefficient was higher than 0.8 in the frequency range from 800 to 1600 Hz and 1600 to 2400 Hz when perforated composites had 4 mm-AS at 5 % and 10 % perforation ratio. With the increase in perforation ratio, absorption peak moved from 3200 Hz to 4000 Hz. Hybrid nonwoven laminated layer help to broaden the frequency range of acoustic absorption of perforated high-density flexible foam based composites panel. Acoustic absorption coefficient was higher than 0.4 when frequency ranging from 900 Hz to 4000 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. van Kempen, P. Fischer, N. Janssen, D. Houthuijs, I. van Kamp, S. Stansfeld, and F. Cassee, Environ. Res., 115, 18 (2012).

    Article  Google Scholar 

  2. A. Fyhri and R. Klaeboe, Environ. Int., 35, 91 (2009).

    Article  CAS  Google Scholar 

  3. J. H. W. Dong Guan, J. Wu, J. Li, and W. Zhao, Appl. Acoust., 87, 103 (2015).

    Article  Google Scholar 

  4. R. D. Rey, J. Alba, J. P. Arenas, and V. J. Sanchis, Appl. Acoust., 73, 604 (2012).

    Article  Google Scholar 

  5. M. Hosseini Fouladi, M. Ayub, and M. Jailani Mohd Nor, Appl. Acoust., 72, 35 (2011).

    Article  Google Scholar 

  6. S. Jiang, Y. Xu, H. Zhang, C. B. White, and X. Yan, Appl. Acoust., 73, 243 (2012).

    Article  Google Scholar 

  7. Z. Bo and C. Tianning, Appl. Acoust., 70, 337 (2009).

    Article  Google Scholar 

  8. Y. Li, Z. Li, and F. Han, Procedia Materials Science, 4, 187 (2014).

    Article  Google Scholar 

  9. D. Cuiyun, C. Guang, X. Xinbang, and L. Peisheng, Appl. Acoust., 73, 865 (2012).

    Article  Google Scholar 

  10. M.-D. Lin, K.-T. Tsai, and B.-S. Su, Appl. Acoust., 70, 31 (2009).

    Article  Google Scholar 

  11. R. Tayong, T. Dupont, and P. Leclaire, Appl. Acoust., 72, 777 (2011).

    Article  Google Scholar 

  12. X. H. Duan, H. Q. Wang, Z. B. Li, L. K. Zhu, R. Chen, D. Y. Kong, and Z. Zhao, Appl. Acoust., 88, 84 (2015).

    Article  Google Scholar 

  13. D. Jahani, A. Ameli, P. U. Jung, M. R. Barzegari, C. B. Park, and H. Naguib, Mater. Des., 53, 20 (2014).

    Article  CAS  Google Scholar 

  14. J. Xu, J. M. Buchholz, and F. R. Fricke, Appl. Acoust., 67, 476 (2006).

    Article  Google Scholar 

  15. N. Jiang, J. Y. Chen, and D. V. Parikh, Bioresour. Technol., 100, 6533 (2009).

    Article  CAS  Google Scholar 

  16. S. Ersoy and H. Küçük, Appl. Acoust., 70, 215 (2009).

    Article  Google Scholar 

  17. N. Atalla and F. Sgard, J. Sound Vib., 303, 195 (2007).

    Article  Google Scholar 

  18. F. C. Sgard, X. Olny, N. Atalla, and F. Castel, Appl. Acoust., 66, 625 (2005).

    Article  Google Scholar 

  19. H. Aygun and K. Attenborough, Appl. Acoust., 69, 506 (2008).

    Article  Google Scholar 

  20. S. T. Lee and N. S. Ramesh in “Polymeric Foams: Mechanisms and Materials”, p.139, CRC Press LLC, 2004.

    Book  Google Scholar 

  21. S. Dworakowska, D. Bogdal, F. Zaccheria, and N. Ravasio, Catal. Today, 223, 148 (2014).

    Article  CAS  Google Scholar 

  22. D. de Mello, S. H. Pezzin, and S. C. Amico, Polymer Testing, 28, 702 (2009).

    Article  Google Scholar 

  23. A. Mohammadi, M. M. Lakouraj, and M. Barikani, React. Funct. Polym., 83, 14 (2014).

    Article  CAS  Google Scholar 

  24. Z. Lan, R. Daga, R. Whitehouse, S. McCarthy, and D. Schmidt, Polymer, 55, 2635 (2014).

    Article  CAS  Google Scholar 

  25. R. Yan, R. Wang, C.-W. Lou, S.-Y. Huang, and J.-H. Lin, Compos. Pt. B-Eng., 83, 253 (2015).

    Article  CAS  Google Scholar 

  26. J. G. Gwon, S. K. Kim, and J. H. Kim, Mater. Des., 89, 448 (2015).

    Google Scholar 

  27. C.-W. Lou, S.-Y. Huang, R. Yan, and J.-H. Lin, J. Appl. Polym. Sci., DOI: 10.1002/app.42288 (2015).

    Google Scholar 

  28. C. W. Lou, S. Y. Huang, and J. H. Lin, Adv. Mater. Res., 910, 174 (2014).

    Article  Google Scholar 

  29. ASTM. C423-09a, “Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method”, 2009.

    Google Scholar 

  30. J. Liu, W. Bao, L. Shi, B. Zuo, and W. Gao, Appl. Acoust., 76, 128 (2014).

    Article  Google Scholar 

  31. C. Zhang, J. Li, Z. Hu, F. Zhu, and Y. Huang, Mater. Des., 41, 319 (2012).

    Article  CAS  Google Scholar 

  32. J. António, Fiber. Compos. Mater. Civil Eng. Appl., 11, 306 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Horng Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, CW., Huang, SY., Huang, CH. et al. Effects of structure design on resilience and acoustic absorption properties of porous flexible-foam based perforated composites. Fibers Polym 16, 2652–2662 (2015). https://doi.org/10.1007/s12221-015-5164-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-5164-6

Keywords

Navigation