Skip to main content
Log in

Highly-efficient adsorption behavior of mesoporous Co-HDIPT toward both anionic and cationic organic dyes

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) exhibit the prominent advantages in the efficient removal of organic dyes owing to their diverse topology structure, adjustable pore parameters, high specific surface area and special affinity brought by the metal node and polydentate organic linkers. Herein, a mesoporous Co-HDIPT is synthesized successfully and employed in the adsorption tests of eight synthetic dyes for the first time involving congo red, methyl orange, reactive blue 19, basic fuchsin, malachite green, acid fuchsin, rhodamine B and acid yellow 23. These dyes are featured in different ionic nature (cationic or anionic) and functional groups. The adsorption conditions were optimized, and the adsorption kinetics and the adsorption isotherms were simulated to investigate the adsorption mechanism. Interestingly, the resulting Co-HDIPT exhibits a rapid adsorption rate toward eight organic dyes, and an extraordinary adsorption efficiency of 14,723.7 mg/g toward MG, which value is higher than the previously reported results by other MOFs-based adsorbents. To the best of our knowledge, it’s the first time to study the adsorption activities of the mesoporous Co-HDIPT, and the satisfied results would enrich the applications of mesoporous MOFs in the efficient removal of synthetic organics from the waste water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

  1. K. Sushila, A. Sharma, S.C. Sahoo, G. Kumar, S.K. Mehta, R. Kataria, Synthesis and characterization of 1D-Co/Zn MOFs having potential for efficient dye adsorption from wastewater. J. Mol. Struct. 1226, 129327 (2021)

    Article  Google Scholar 

  2. D. Jiang, M. Chen, H. Wang, G. Zeng, D. Huang, M. Cheng, Z. Wang, The application of different typological and structural MOFs-based materials for the dyes adsorption. Coord. Chem. Rev. 380, 471–483 (2019). https://doi.org/10.1016/j.ccr.2018.11.002

    Article  CAS  Google Scholar 

  3. Y. An, H. Zheng, Z. Yu, Y. Sun, Y. Wang, C. Zhao, W. Ding, Functioned hollow glass microsphere as a self-floating adsorbent: Rapid and high-efficient removal of anionic dye. J. Hazard. Mater. 381, 120971 (2020). https://doi.org/10.1016/j.jhazmat.2019.120971

    Article  CAS  PubMed  Google Scholar 

  4. K. El Hassani, D. Kalnina, M. Turks, B.H. Beakou, A. Anouar, Enhanced degradation of an azo dye by catalytic ozonation over Ni-containing layered double hydroxide nanocatalyst. Sep. Purif. Technol. 210, 764–774 (2019). https://doi.org/10.1016/j.seppur.2018.08.074

    Article  CAS  Google Scholar 

  5. N.C. Dias, J.P. Bassin, G.L. Sant’Anna, M. Dezotti, Ozonation of the dye Reactive Red 239 and biodegradation of ozonation products in a moving-bed biofilm reactor: Revealing reaction products and degradation pathways. Int. Biodeterior. Biodegrad. 144, 104742 (2019)

    Article  CAS  Google Scholar 

  6. F. Boudissa, D. Mirilà, V.-A. Arus, T. Terkmani, S. Semaan, M. Proulx, A. Azzouz, Acid-treated clay catalysts for organic dye ozonation – Thorough mineralization through optimum catalyst basicity and hydrophilic character. J. Hazard. Mater. 364, 356–366 (2019). https://doi.org/10.1016/j.jhazmat.2018.09.070

    Article  CAS  PubMed  Google Scholar 

  7. D.G. Bassyouni, H.A. Hamad, E.S.Z. El-Ashtoukhy, N.K. Amin, M.M.A. El-Latif, Comparative performance of anodic oxidation and electrocoagulation as clean processes for electrocatalytic degradation of diazo dye Acid Brown 14 in aqueous medium. J. Hazard. Mater. 335, 178–187 (2017). https://doi.org/10.1016/j.jhazmat.2017.04.045

    Article  CAS  PubMed  Google Scholar 

  8. G. Pan, X. Jing, X. Ding, Y. Shen, S. Xu, W. Miao, Synergistic effects of photocatalytic and electrocatalytic oxidation based on a three-dimensional electrode reactor toward degradation of dyes in wastewater. J. Alloys Compd. 809, 151749 (2019). https://doi.org/10.1016/j.jallcom.2019.151749

    Article  CAS  Google Scholar 

  9. J. Liu, A. Liu, W. Wang, R. Li, W.X. Zhang, Feasibility of nanoscale zero-valent iron (nZVI) for enhanced biological treatment of organic dyes. Chemosphere 237, 124470 (2019). https://doi.org/10.1016/j.chemosphere.2019.124470

    Article  CAS  PubMed  Google Scholar 

  10. S. Mishra, L. Cheng, A. Maiti, The utilization of agro-biomass/byproducts for effective bio-removal of dyes from dyeing wastewater: A comprehensive review. J. Environ. Chem. Eng. 9, 104901 (2021). https://doi.org/10.1016/j.jece.2020.104901

    Article  CAS  Google Scholar 

  11. J. Zhao, H. Liu, P. Xue, S. Tian, S. Sun, X. Lv, Highly-efficient PVDF adsorptive membrane filtration based on chitosan@CNTs-COOH simultaneous removal of anionic and cationic dyes. Carbohydr. Polym. 274, 118664 (2021). https://doi.org/10.1016/j.carbpol.2021.118664

    Article  CAS  PubMed  Google Scholar 

  12. C. Zhijiang, X. Ping, Z. Cong, Z. Tingting, G. Jie, Z. Kongyin, Preparation and characterization of a bi-layered nano-filtration membrane from a chitosan hydrogel and bacterial cellulose nanofiber for dye removal. Cellulose 25, 5123–5137 (2018). https://doi.org/10.1007/s10570-018-1914-0

    Article  CAS  Google Scholar 

  13. I. Ali, New Generation Adsorbents for Water Treatment. Chem. Rev. 112, 5073–5091 (2012). https://doi.org/10.1021/cr300133d

    Article  CAS  PubMed  Google Scholar 

  14. S. Zhao, Y. Wen, C. Du, T. Tang, D. Kang, Introduction of vacancy capture mechanism into defective alumina microspheres for enhanced adsorption of organic dyes. Chem. Eng. J. 402, 126180 (2020). https://doi.org/10.1016/j.cej.2020.126180

    Article  CAS  Google Scholar 

  15. G.V. Brião, S.L. Jahn, E.L. Foletto, G.L. Dotto, Highly efficient and reusable mesoporous zeolite synthetized from a biopolymer for cationic dyes adsorption. Colloids Surf. A. 556, 43–50 (2018)

    Article  Google Scholar 

  16. X. Liu, J. Tian, Y. Li, N. Sun, S. Mi, Y. Xie, Z. Chen, Enhanced dyes adsorption from wastewater via Fe3O4 nanoparticles functionalized activated carbon. J. Hazard. Mater. 373, 397–407 (2019). https://doi.org/10.1016/j.jhazmat.2019.03.103

    Article  CAS  PubMed  Google Scholar 

  17. Z. Cui, X. Zhang, S. Liu, L. Zhou, W. Li, J. Zhang, Anionic Lanthanide Metal-Organic Frameworks: Selective Separation of Cationic Dyes, Solvatochromic Behavior, and Luminescent Sensing of Co(II) Ion. Inorg. Chem. 57, 11463–11473 (2018). https://doi.org/10.1021/acs.inorgchem.8b01319

    Article  CAS  PubMed  Google Scholar 

  18. B.N. Bhadra, D.K. Yoo, S.H. Jhung, Carbon-derived from metal-organic framework MOF-74: A remarkable adsorbent to remove a wide range of contaminants of emerging concern from water. Appl. Surf. Sci. 504, 144348 (2020). https://doi.org/10.1016/j.apsusc.2019.144348

    Article  CAS  Google Scholar 

  19. S. Dhaka, R. Kumar, A. Deep, M.B. Kurade, S.-W. Ji, B.-H. Jeon, Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord. Chem. Rev. 380, 330–352 (2019). https://doi.org/10.1016/j.ccr.2018.10.003

    Article  CAS  Google Scholar 

  20. X.Y. Chu, F.L. Meng, T. Deng, Y. Lu, O. Bondarchuk, M.L. Sui, M. Feng, H.B. Li, W. Zhang, Mechanistic insight into bimetallic CoNi-MOF arrays with enhanced performance for supercapacitors. Nanoscale 12, 5669–5677 (2020). https://doi.org/10.1039/C9NR10473A

    Article  CAS  PubMed  Google Scholar 

  21. T. Deng, Y. Lu, W. Zhang, M.L. Sui, X.Y. Shi, D. Wang, W.T. Zheng, Inverted Design for High-Performance Supercapacitor Via Co(OH)2-Derived Highly Oriented MOF Electrodes. Adv. Energy Mater. 8, 1702294 (2018). https://doi.org/10.1002/aenm.201702294

    Article  CAS  Google Scholar 

  22. M. Cao, T. Cai, X. Zhang, Study on Amination Modification of Fe-BTC and Their Adsorption for Dyes and Heavy Metal Ions. Acta Metall. Sin. 55, 821–830 (2019)

    CAS  Google Scholar 

  23. Y. Tan, Z. Sun, H. Meng, Y. Han, J. Wu, J. Xu, Y. Xu, X. Zhang, Aminated metal-organic framework (NH2-MIL-101 (Cr)) incorporated polyvinylidene (PVDF) hybrid membranes: Synthesis and application in efficient removal of Congo red from aqueous solution. Appl. Organomet. Chem. 34, e5281 (2020). https://doi.org/10.1002/aoc.5281

    Article  CAS  Google Scholar 

  24. X. Quan, Z. Sun, J. Xu, S. Liu, Y. Han, Y. Xu, H. Meng, J. Wu, X. Zhang, Construction of an Aminated MIL-53(Al)-Functionalized Carbon Nanotube for the Efficient Removal of Bisphenol AF and Metribuzin. Inorg. Chem. 59, 2667–2679 (2020). https://doi.org/10.1021/acs.inorgchem.9b02841

    Article  CAS  PubMed  Google Scholar 

  25. Y. Tan, Z. Sun, H. Meng, Y. Han, J. Wu, J. Xu, Y. Xu, X. Zhang, A new MOFs/polymer hybrid membrane: MIL-68(Al)/PVDF, fabrication and application in high-efficient removal of p-nitrophenol and methylene blue. Sep. Purif. Technol. 215, 217–226 (2019). https://doi.org/10.1016/j.seppur.2019.01.008

    Article  CAS  Google Scholar 

  26. S.-Q. Deng, X.-J. Mo, S.-R. Zheng, X. Jin, Y. Gao, S.-L. Cai, J. Fan, W.-G. Zhang, Hydrolytically stable nanotubular cationic metal-organic framework for rapid and efficient removal of toxic oxo-anions and dyes from water. Inorg. Chem. 58, 2899–2909 (2019). https://doi.org/10.1021/acs.inorgchem.9b00104

    Article  CAS  PubMed  Google Scholar 

  27. Y. Feng, S.-L. Cai, Y. Gao, S.-R. Zheng, Construction of coordination polymers based on a rigid tripodal nitrogen-containing heterotopic ligand that designed by mixed-donors strategy. J. Solid State Chem. 265, 64–71 (2018). https://doi.org/10.1016/j.jssc.2018.05.031

    Article  CAS  Google Scholar 

  28. H. Hou, R. Zhou, P. Wu, L. Wu, Removal of Congo red dye from aqueous solution with hydroxyapatite/chitosan composite. Chem. Eng. J. 211–212, 336–342 (2012). https://doi.org/10.1016/j.cej.2012.09.100

    Article  CAS  Google Scholar 

  29. H. Reinsch, M. Krüger, J. Wack, J. Senker, F. Salles, G. Maurin, N. Stock, A new aluminium-based microporous metal–organic framework: Al(BTB) (BTB=1,3,5-benzenetrisbenzoate). Microporous Mesoporous Mater. 157, 50–55 (2012). https://doi.org/10.1016/j.micromeso.2011.05.029

    Article  CAS  Google Scholar 

  30. Z. Shi, C. Xu, H. Guan, L. Li, L. Fan, Y. Wang, L. Liu, Q. Meng, R. Zhang, Magnetic metal organic frameworks (MOFs) composite for removal of lead and malachite green in wastewater. Colloids Surf. A. 53, 382–390 (2018)

    Article  Google Scholar 

  31. M.A. Nazir, M.A. Bashir, T. Najam, M.S. Javed, S. Suleman, S. Hussain, O.P. Kumar, S.S.A. Shah, Au. Rehman, Combining structurally ordered intermetallic nodes: Kinetic and isothermal studies for removal of malachite green and methyl orange with mechanistic aspects. Microchem. J. 164, 105973 (2021)

    Article  CAS  Google Scholar 

  32. Z. Shi, L. Li, Y. Xiao, Y. Wang, K. Sun, H. Wang, L. Liu, Synthesis of mixed-ligand Cu–MOFs and their adsorption of malachite green. RSC adv. 7, 30904–30910 (2017). https://doi.org/10.1039/C7RA04820C

    Article  CAS  Google Scholar 

  33. G.R. Delpiano, D. Tocco, L. Medda, E. Magner, A. Salis, Adsorption of Malachite Green and Alizarin Red S Dyes Using Fe-BTC Metal Organic Framework as Adsorbent. Int. J. Mol. Sci (2021). https://doi.org/10.3390/ijms22020788

    Article  PubMed  PubMed Central  Google Scholar 

  34. A.A. Alqadami, M. Naushad, Z.A. Alothman, T. Ahamad, Adsorptive performance of MOF nanocomposite for methylene blue and malachite green dyes: Kinetics, isotherm and mechanism. J. Environ. Manage. 223, 29–36 (2018). https://doi.org/10.1016/j.jenvman.2018.05.090

    Article  CAS  PubMed  Google Scholar 

  35. K.-Y.A. Lin, H.-A. Chang, Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere 139, 624–631 (2015). https://doi.org/10.1016/j.chemosphere.2015.01.041

    Article  CAS  PubMed  Google Scholar 

  36. S.A. Sadat, A.M. Ghaedi, M. Panahimehr, M.M. Baneshi, A. Vafaei, M. Ansarizadeh, Rapid room-temperature synthesis of cadmium zeolitic imidazolate framework nanoparticles based on 1,1′-carbonyldiimidazole as ultra-high-efficiency adsorbent for ultrasound-assisted removal of malachite green dye. Appl. Surf. Sci. 467–468, 1204–1212 (2019). https://doi.org/10.1016/j.apsusc.2018.10.274

    Article  CAS  Google Scholar 

  37. M. Mohammadnejad, T. Hajiashrafi, R. Rashnavadi, Highly efficient determination of malachite green in aquatic product using Tb-organic framework as sorbent. J. Porous Mater. 25, 1771–1781 (2018). https://doi.org/10.1007/s10934-018-0590-7

    Article  CAS  Google Scholar 

  38. L.-J. Han, F.-Y. Ge, G.-H. Sun, X.-J. Gao, H.-G. Zheng, Effective adsorption of Congo red by a MOF-based magnetic material. Dalton Trans. 48, 4650–4656 (2019). https://doi.org/10.1039/C9DT00813F

    Article  CAS  PubMed  Google Scholar 

  39. F.M. Valadi, A. Ekramipooya, M.R. Gholami, Selective separation of Congo Red from a mixture of anionic and cationic dyes using magnetic-MOF: Experimental and DFT study. J. Mol. Liq. 318, 114051 (2020). https://doi.org/10.1016/j.molliq.2020.114051

    Article  CAS  Google Scholar 

  40. X. Guo, L. Kong, Y. Ruan, Z. Diao, K. Shih, M. Su, L.A. Hou, D. Chen, Green and facile synthesis of cobalt-based metal–organic frameworks for the efficient removal of Congo red from aqueous solution. J. Colloid Interface Sci. 578, 500–509 (2020)

    Article  CAS  Google Scholar 

  41. N. Chen, D. Chen, F. Wei, S. Zhao, Y. Luo, Effect of structures on the adsorption performance of Cobalt Metal Organic Framework obtained by microwave-assisted ball milling. Chem. Phys. Lett. 705, 23–30 (2018). https://doi.org/10.1016/j.cplett.2018.05.051

    Article  CAS  Google Scholar 

  42. M.Y. Masoomi, A. Morsali, P.C. Junk, J. Wang, Ultrasonic assisted synthesis of two new coordination polymers and their applications as precursors for preparation of nano-materials. Ultrason. Sonochem. 34, 984–992 (2017). https://doi.org/10.1016/j.ultsonch.2016.06.024

    Article  CAS  PubMed  Google Scholar 

  43. X.-F. Zhang, F.-B. Li, J. Wu, J.-L. Shi, Z. Liu, L. Liu, Synthesis of Fullerene-Fused Dioxanes/Dioxepanes: Ferric Perchlorate-Mediated One-Step Reaction of Fullerene with Diols. J. Org. Chem. 80, 6037–6043 (2015). https://doi.org/10.1021/acs.joc.5b00360

    Article  CAS  PubMed  Google Scholar 

  44. R.-R. Shan, L.-B. Yan, K. Yang, S.-J. Yu, Y.-F. Hao, H.-Q. Yu, B. Du, Magnetic Fe3O4/MgAl-LDH composite for effective removal of three red dyes from aqueous solution. Chem. Eng. J. 252, 38–46 (2014). https://doi.org/10.1016/j.cej.2014.04.105

    Article  CAS  Google Scholar 

  45. V.D. Doan, T.K.N. Tran, A.T. Nguyen, V.A. Tran, T.D. Nguyen, Comparative study on adsorption of cationic and anionic dyes by nanomagnetite supported on biochar derived from Eichhornia crassipes and Phragmites australis stems. Environ Nanotech Monit Manag. 16, 100569 (2021). https://doi.org/10.1016/j.enmm.2021.100569

    Article  Google Scholar 

  46. A.H. Jawad, U.K. Sahu, N.A. Jani, Z.A. Alothman, L.D. Wilson, Magnetic crosslinked chitosan-tripolyphosphate/MgO/Fe3O4 nanocomposite for reactive blue 19 dye removal: Optimization using desirability function approach. Surf Interfaces (2021). https://doi.org/10.1016/j.surfin.2021.101698

    Article  Google Scholar 

  47. N.K. Nga, N.T.T. Chau, P.H. Viet, Preparation and characterization of a chitosan/MgO composite for the effective removal of reactive blue 19 dye from aqueous solution. J Sci-Adv Mater Dev. 5, 65–72 (2020). https://doi.org/10.1016/j.jsamd.2020.01.009

    Article  Google Scholar 

  48. X. Quan, Z. Sun, H. Meng, Y. Han, J. Wu, J. Xu, Y. Xu, X. Zhang, Polyethyleneimine (PEI) incorporated Cu-BTC composites: Extended applications in ultra-high efficient removal of congo red. J. Solid State Chem. 270, 231–241 (2019). https://doi.org/10.1016/j.jssc.2018.11.021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by LiaoNing Science and Technology Development Foundation Guided by Central Government (2021JH6/10500141)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Xu, Z. & Zhang, X. Highly-efficient adsorption behavior of mesoporous Co-HDIPT toward both anionic and cationic organic dyes. J Porous Mater 29, 795–806 (2022). https://doi.org/10.1007/s10934-022-01214-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01214-4

Keywords

Navigation