Skip to main content
Log in

Effective Suzuki coupling reaction enabled by palladium–polycarbene catalyst derived from porous polyimidazolium

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

N-heterocyclic-carbene based polymers with abundant active sites and excellent stability are fascinating and highly desired while remain rare for the lack of easy synthetic protocols. In this article, an unprecedented strategy that employed a porous polyimidazolium (IPF-CSU-4) as the support for Pd(II) coordination was proposed to develop efficient heterogeneous catalyst. IPF-CSU-4 was constructed via a one-step quaternization chemistry between 2,4,6-tris(1-imidazolyl)-1,3,5-triazine and 1,4-bis(chloromethyl)benzene. The in-situ complexation of palladium (Pd) with carbene ligand of the polyimidazolium readily afforded a Pd-loaded porous polymeric network (Pd-PPc-4) with high stability. Pd-PPc-4 showed favorable accessibility to seven aryl halides substrates in Suzuki coupling reactions, with a catalytic yield up to 99% under mild conditions (3 h, 60 °C) and no obvious loss of activity even after five catalytic cycles. This provides new pathways for developing highly-efficient and stable catalysts through porous organic polymers for typical organic transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. N. Miyaura, T. Yanagi, A. Suzuki, The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presence of bases. Synth. Commun. 11, 513–519 (1981). https://doi.org/10.1080/00397918108063618

    Article  CAS  Google Scholar 

  2. D. Yu, J. Bai, J. Wang, H. Liang, C. Li, Assembling formation of highly dispersed Pd nanoparticles supported 1D carbon fiber electrospun with excellent catalytic active and recyclable performance for Suzuki reaction. Appl. Surf. Sci. 399, 185–191 (2017). https://doi.org/10.1016/j.apsusc.2016.12.065

    Article  CAS  Google Scholar 

  3. J. Ruan, O. Saidi, J.A. Iggo, J. Xiao, Direct acylation of aryl bromides with aldehydes by palladium catalysis. J. Am. Chem. Soc. 130, 10510–10511 (2008). https://doi.org/10.1021/ja804351z

    Article  CAS  PubMed  Google Scholar 

  4. E.A.B. Kantchev, C.J. O’Brien, M.G. Organ, Palladium complexes of N-heterocyclic carbenes as catalysts for cross-coupling reactions—a synthetic chemist’s perspective. Angew. Chemie Int. Ed. 46, 2768–2813 (2007). https://doi.org/10.1002/anie.200601663

    Article  CAS  Google Scholar 

  5. I.P. Beletskaya, A.V. Cheprakov, The heck reaction as a sharpening stone of palladium catalysis. Chem. Rev. 100, 3009–3066 (2000). https://doi.org/10.1021/cr9903048

    Article  CAS  PubMed  Google Scholar 

  6. J. Huang, W. Wang, H. Li, Water-medium organic reactions catalyzed by active and reusable Pd/Y heterobimetal-organic framework. ACS Catal. 3, 1526–1536 (2013). https://doi.org/10.1021/cs400094x

    Article  CAS  Google Scholar 

  7. D.G. Brown, J. Boström, Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016). https://doi.org/10.1021/acs.jmedchem.5b01409

    Article  CAS  PubMed  Google Scholar 

  8. A. Molnár, Efficient, selective, and recyclable palladium catalysts in carbon−carbon coupling reactions. Chem. Rev. 111, 2251–2320 (2011). https://doi.org/10.1021/cr100355b

    Article  CAS  PubMed  Google Scholar 

  9. S.A. Sorokina, N.V. Kuchkina, B.P. Lawson, I.Y. Krasnova, N.A. Nemygina, L.Z. Nikoshvili, V.N. Talanova, B.D. Stein, M. Pink, D.G. Morgan, E.M. Sulman, L.M. Bronstein, Z.B. Shifrina, Pyridylphenylene dendrons immobilized on the surface of chemically modified magnetic silica as efficient stabilizing molecules of Pd species. Appl. Surf. Sci. 488, 865–873 (2019). https://doi.org/10.1016/j.apsusc.2019.05.141

    Article  CAS  Google Scholar 

  10. B.M. Choudary, S. Madhi, N.S. Chowdari, M.L. Kantam, B. Sreedhar, Layered double hydroxide supported nanopalladium catalyst for heck-, suzuki-, sonogashira-, and stille-type coupling reactions of chloroarenes. J. Am. Chem. Soc. 124, 14127–14136 (2002). https://doi.org/10.1021/ja026975w

    Article  CAS  PubMed  Google Scholar 

  11. A. Corma, P. Concepcion, I. Dominguez, V. Forne, M. Sabater, Gold supported on a biopolymer (chitosan) catalyzes the regioselective hydroamination of alkynes. J. Catal. 251, 39–47 (2007). https://doi.org/10.1016/j.jcat.2007.07.021

    Article  CAS  Google Scholar 

  12. G. Wei, W. Zhang, F. Wen, Y. Wang, M. Zhang, Suzuki reaction within the core-corona nanoreactor of poly(N-msopropylacrylamide)-grafted Pd nanoparticle in water. J. Phys. Chem. C. 112, 10827–10832 (2008). https://doi.org/10.1021/jp800741t

    Article  CAS  Google Scholar 

  13. Q. Sun, Z. Dai, X. Meng, L. Wang, F.-S. Xiao, Task-specific design of porous polymer heterogeneous catalysts beyond homogeneous counterparts. ACS Catal. 5, 4556–4567 (2015). https://doi.org/10.1021/acscatal.5b00757

    Article  CAS  Google Scholar 

  14. W. Wang, Y. Wang, C. Li, L. Yan, M. Jiang, Y. Ding, State-of-the-art multifunctional heterogeneous POP catalyst for cooperative transformation of CO2 to cyclic carbonates. ACS Sustain. Chem. Eng. 5, 4523–4528 (2017). https://doi.org/10.1021/acssuschemeng.7b00947

    Article  CAS  Google Scholar 

  15. Z. Dai, Q. Sun, X. Liu, C. Bian, Q. Wu, S. Pan, L. Wang, X. Meng, F. Deng, F.-S. Xiao, Metalated porous porphyrin polymers as efficient heterogeneous catalysts for cycloaddition of epoxides with CO2 under ambient conditions. J. Catal. 338, 202–209 (2016). https://doi.org/10.1016/j.jcat.2016.03.005

    Article  CAS  Google Scholar 

  16. X. Wang, X. Han, J. Zhang, X. Wu, Y. Liu, Y. Cui, Homochiral 2D porous covalent organic frameworks for heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 138, 12332–12335 (2016). https://doi.org/10.1021/jacs.6b07714

    Article  CAS  PubMed  Google Scholar 

  17. J.K. Sun, W.W. Zhan, T. Akita, Q. Xu, Toward homogenization of heterogeneous metal nanoparticle catalysts with enhansced catalytic performance: soluble porous organic cage as a stabilizer and homogenizer. J. Am. Chem. Soc. 137, 7063–7066 (2015). https://doi.org/10.1021/jacs.5b04029

    Article  CAS  PubMed  Google Scholar 

  18. S.-Y. Ding, J. Gao, Q. Wang, Y. Zhang, W.-G. Song, C.-Y. Su, W. Wang, Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 133, 19816–19822 (2011). https://doi.org/10.1021/ja206846p

    Article  CAS  PubMed  Google Scholar 

  19. Y. Qian, S.Y. Jeong, S.-H. Baeck, M.-J. Jin, S.E. Shim, A palladium complex confined in a thiadiazole-functionalized porous conjugated polymer for the Suzuki-Miyaura coupling reaction. RSC Adv. 9, 33563–33571 (2019). https://doi.org/10.1039/C9RA06709D

    Article  CAS  Google Scholar 

  20. F. Wang, J. Mielby, F.H. Richter, G. Wang, G. Prieto, T. Kasama, C. Weidenthaler, H.-J. Bongard, S. Kegnaes, A. Fürstner, F. Schüth, A polyphenylene support for Pd catalysts with exceptional catalytic activity. Angew. Chemie Int. Ed. 53, 8645–8648 (2014). https://doi.org/10.1002/anie.201404912

    Article  CAS  Google Scholar 

  21. Y. Dong, J. Bi, S. Zhang, D. Zhu, D. Meng, S. Ming, K. Qin, Q. Liu, L. Guo, T. Li, Palladium supported on N-heterocyclic carbene functionalized hydroxyethyl cellulose as a novel and efficient catalyst for the Suzuki reaction in aqueous media. Appl. Surf. Sci. 531, 147392 (2020). https://doi.org/10.1016/j.apsusc.2020.147392

    Article  CAS  Google Scholar 

  22. R. Visbal, M.C. Gimeno, N-heterocyclic carbene metal complexes: photoluminescence and applications. Chem. Soc. Rev. 43, 3551–3574 (2014). https://doi.org/10.1039/C3CS60466G

    Article  CAS  PubMed  Google Scholar 

  23. S. Wang, X. Wang, Imidazolium ionic liquids, imidazolylidene heterocyclic carbenes, and zeolitic imidazolate frameworks for CO2 capture and photochemical reduction. Angew. Chemie Int. Ed. 55, 2308–2320 (2016). https://doi.org/10.1002/anie.201507145

    Article  CAS  Google Scholar 

  24. O. Schuster, L. Yang, H.G. Raubenheimer, M. Albrecht, Beyond conventional N-heterocyclic carbenes: abnormal, remote, and other classes of NHC ligands with reduced heteroatom stabilization. Chem. Rev. 109, 3445–3478 (2009). https://doi.org/10.1021/cr8005087

    Article  CAS  PubMed  Google Scholar 

  25. D.J. Nelson, S.P. Nolan, Quantifying and understanding the electronic properties of N-heterocyclic carbenes. Chem. Soc. Rev. 42, 6723 (2013). https://doi.org/10.1039/c3cs60146c

    Article  CAS  PubMed  Google Scholar 

  26. J.C.Y. Lin, R.T.W. Huang, C.S. Lee, A. Bhattacharyya, W.S. Hwang, I.J.B. Lin, Coinage metal-N-heterocyclic carbene complexes. Chem. Rev. 109, 3561–3598 (2009). https://doi.org/10.1021/cr8005153

    Article  CAS  PubMed  Google Scholar 

  27. J. Choi, H.Y. Yang, H.J. Kim, S.U. Son, Organometallic hollow spheres bearing bis(N-heterocyclic carbene)-palladium species: catalytic application in three-component strecker reactions. Angew. Chemie Int. Ed. 49, 7718–7722 (2010). https://doi.org/10.1002/anie.201003101

    Article  CAS  Google Scholar 

  28. H.C. Cho, H.S. Lee, J. Chun, S.M. Lee, H.J. Kim, S.U. Son, Tubular microporous organic networks bearing imidazolium salts and their catalytic CO2 conversion to cyclic carbonates. Chem. Commun. 47, 917–919 (2011). https://doi.org/10.1039/C0CC03914D

    Article  CAS  Google Scholar 

  29. K. Thiel, R. Zehbe, J. Roeser, P. Strauch, S. Enthaler, A. Thomas, A polymer analogous reaction for the formation of imidazolium and NHC based porous polymer networks. Polym. Chem. 4, 1848 (2013). https://doi.org/10.1039/c2py20947k

    Article  CAS  Google Scholar 

  30. E. Troschke, K.D. Nguyen, S. Paasch, J. Schmidt, G. Nickerl, I. Senkovska, E. Brunner, S. Kaskel, Integration of an N-heterocyclic carbene precursor into a covalent triazine framework for organocatalysis. Chem. A Eur. J. 24, 18629–18633 (2018). https://doi.org/10.1002/chem.201804373

    Article  CAS  Google Scholar 

  31. S. Yang, Q. Zhang, Y. Hu, G. Ding, J. Wang, S. Huo, B. Zhang, J. Cheng, Synthesis of s-triazine based tri-imidazole derivatives and their application as thermal latent curing agents for epoxy resin. Mater. Lett. 216, 127–130 (2018). https://doi.org/10.1016/j.matlet.2017.12.122

    Article  CAS  Google Scholar 

  32. X. Yu, J. Sun, J. Yuan, W. Zhang, C. Pan, Y. Liu, G. Yu, One-pot synthesis of an ionic porous organic framework for metal-free catalytic CO2 fixation under ambient conditions. Chem. Eng. J. 350, 867–871 (2018). https://doi.org/10.1016/j.cej.2018.05.175

    Article  CAS  Google Scholar 

  33. M. Lin, S. Wang, J. Zhang, W. Luo, H. Liu, W. Wang, C.-Y. Su, Guest uptake and heterogeneous catalysis of a porous Pd(II) N-heterocyclic carbene polymer. J. Mol. Catal. A Chem. 394, 33–39 (2014). https://doi.org/10.1016/j.molcata.2014.06.039

    Article  CAS  Google Scholar 

  34. T.W. van Deelen, C. Hernández Mejía, K.P. de Jong, Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019). https://doi.org/10.1038/s41929-019-0364-x

    Article  CAS  Google Scholar 

  35. W.-Y. Wu, S.-N. Chen, F.-Y. Tsai, Recyclable and highly active cationic 2,2′-bipyridyl palladium(II) catalyst for Suzuki cross-coupling reaction in water. Tetrahedron Lett. 47, 9267–9270 (2006). https://doi.org/10.1016/j.tetlet.2006.10.127

    Article  CAS  Google Scholar 

  36. P. Zhang, Z. Weng, J. Guo, C. Wang, Solution-dispersible, colloidal, conjugated porous polymer networks with entrapped palladium nanocrystals for heterogeneous catalysis of the Suzuki-Miyaura coupling reaction. Chem. Mater. 23, 5243–5249 (2011). https://doi.org/10.1021/cm202283z

    Article  CAS  Google Scholar 

  37. M.K. Bhunia, S.K. Das, P. Pachfule, R. Banerjee, A. Bhaumik, Nitrogen-rich porous covalent imine network (CIN) material as an efficient catalytic support for C-C coupling reactions. Dalt. Trans. 41, 1304–1311 (2012). https://doi.org/10.1039/C1DT11350J

    Article  CAS  Google Scholar 

  38. L. Geng, Y. Li, Z. Qi, H. Fan, Z. Zhou, R. Chen, Y. Wang, J. Huang, Highly efficient palladium catalysts supported on nitrogen contained polymers for Suzuki-Miyaura reaction. Catal. Commun. 82, 24–28 (2016). https://doi.org/10.1016/j.catcom.2016.04.011

    Article  CAS  Google Scholar 

  39. G. Liu, M. Hou, T. Wu, T. Jiang, H. Fan, G. Yang, B. Han, Pd(II) immobilized on mesoporous silica by N-heterocyclic carbene ionic liquids and catalysis for hydrogenation. Phys. Chem. Chem. Phys. 13, 2062 (2011). https://doi.org/10.1039/c0cp01213k

    Article  CAS  PubMed  Google Scholar 

  40. X. Gou, T. Liu, Y. Wang, Y. Han, Ultrastable and highly catalytically active N-heterocyclic-carbene-stabilized gold nanoparticles in confined spaces. Angew. Chemie Int. Ed. (2020). https://doi.org/10.1002/anie.202006569

    Article  Google Scholar 

  41. Y. Liu, B. Lou, L. Shangguan, J. Cai, H. Zhu, B. Shi, Pillar[5]arene-based organometallic cross-linked polymer: synthesis, structure characterization, and catalytic activity in the Suzuki-Miyaura coupling reaction. Macromolecules 51, 1351–1356 (2018). https://doi.org/10.1021/acs.macromol.7b02701

    Article  CAS  Google Scholar 

  42. M.I. Burguete, E. García-Verdugo, I. Garcia-Villar, F. Gelat, P. Licence, S.V. Luis, V. Sans, Pd catalysts immobilized onto gel-supported ionic liquid-like phases (g-SILLPs): a remarkable effect of the nature of the support. J. Catal. 269, 150–160 (2010). https://doi.org/10.1016/j.jcat.2009.11.002

    Article  CAS  Google Scholar 

  43. Z. Guan, J. Hu, Y. Gu, H. Zhang, G. Li, T. Li, PdCl2(py)2 encaged in monodispersed zeolitic hollow spheres: a highly efficient and reusable catalyst for Suzuki-Miyaura cross-coupling reaction in aqueous media. Green Chem. 14, 1964 (2012). https://doi.org/10.1039/c2gc35302d

    Article  CAS  Google Scholar 

  44. S.-W. Kim, J. Park, Y. Jang, Y. Chung, S. Hwang, T. Hyeon, Y.W. Kim, Synthesis of monodisperse palladium nanoparticles. Nano Lett. 3, 1289–1291 (2003). https://doi.org/10.1021/nl0343405

    Article  CAS  Google Scholar 

  45. L. Botella, C. Nájera, Cross-coupling reactions with boronic acids in water catalysed by oxime-derived palladacycles. J. Organomet. Chem. 663, 46–57 (2002). https://doi.org/10.1016/S0022-328X(02)01727-8

    Article  CAS  Google Scholar 

  46. D.A. Alonso, C. Nájera, M.C. Pacheco, Highly active oxime-derived Palladacycle complexes for Suzuki−Miyaura and Ullmann-type coupling reactions. J. Org. Chem. 67, 5588–5594 (2002). https://doi.org/10.1021/jo025619t

    Article  CAS  PubMed  Google Scholar 

  47. V.V. Grushin, H. Alper, Transformations of chloroarenes, catalyzed by transition-metal complexes. Chem. Rev. 94(4), 1047–1062 (1994). https://doi.org/10.1021/cr00028a008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Science Foundation of China (Nos. 21674129, 51873232 and 21636010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunyue Pan or Juntao Tang.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1282 kb)

Appendix: Supplementary data

Appendix: Supplementary data

Synthetic route of 2,4,6-tris(1-imidazolyl)-1,3,5-triazine (Fig. S1), (a) 1H NMR spectrum; (b) 13C NMR spectrum; and (c) FT-IR spectrum of triimidazolyl triazine (Fig. S2), FT-IR spectra of IPF-CSU-4 obtained at 70°C, 120°C, 150°C, and 180°C (Fig. S3), SEM spectroscopy of (a) IPF-CSU-4 and (b) Pd-PPc-4 (Fig. S4), TEM spectroscopy of Pd-PPc-4 (Fig. S5), (a) CH4 and (b) CO2 adsorption/desorption isotherms of IPF-CSU-4 and Pd-PPc-4 (Fig. S6), Mass spectrum of IPF-CSU-4 (Fig. S7), Proposed mechanism of Suzuki reaction catalyzed by Pd-PPc-4 (Fig. S8), Pore parameters of the polymers IPF-CSU-4 and Pd-PPc-4 (Table S1), Catalytic condition optimization of Suzuki coupling reaction (Table S2), 1H NMR spectrum of catalytic products (Figs. S9–11).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yu, X., Zhang, W. et al. Effective Suzuki coupling reaction enabled by palladium–polycarbene catalyst derived from porous polyimidazolium. J Porous Mater 29, 601–608 (2022). https://doi.org/10.1007/s10934-021-01193-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01193-y

Keywords

Navigation