Skip to main content
Log in

Effect of chemical vapor deposition of toluene on gas separation performance of carbon molecular sieve membranes

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A carbon molecular sieve (CMS) membrane is a microporous membrane that can serve as a molecular sieve. Tuning the pore size of a CMS membrane to improve the selectivity of desirable gas pair is highly necessary. Herein, we report the first study on the toluene vapor modification of a CMS membrane that shows high H2 selectivity. A commercial polyimide hollow fiber membrane was used as the polymeric precursor, and it was pyrolyzed at different temperatures from 625 to 700 ℃ for up to 120 min in an inert nitrogen atmosphere. Toluene vapor was introduced into the nitrogen stream for different durations (10–50 min) at the final pyrolysis temperature. The permeance of the resulting CMS membranes for H2, CO2, O2, N2, and CH4 gases was evaluated at 35 ℃ under 1 atm pressure. The gas permeance and selectivity could be readily controlled by adjusting the pyrolysis temperature and duration of toluene vapor addition for membrane modification. Upon comparing samples with similar H2 permeances, the toluene-vapor-modified membrane was found to exhibit a higher selectivity for H2/CO2, H2/N2, and H2/CH4. This could not be realized simply by increasing the pyrolysis temperature without toluene vapor addition. For instance, a CMS membrane pyrolyzed at 675 ℃ with 20 min of toluene vapor addition showed H2/CH4 selectivity of 4200 and H2 permeance of 270 GPU, while a CMS membrane pyrolyzed at 700 ℃ without using toluene vapor showed a lower H2/CH4 selectivity of 1100 and a similar H2 permeance of 250 GPU. The optimal pyrolysis conditions of the CMS membrane subjected to toluene vapor modification depend on the targeted gas pair. The proposed toluene vapor modification process can be used as a simple and effective additional treatment for the preparation of CMS membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Wu, J. Xu, K. Mumford, G.W. Stevens, W. Fei, Y. Wang, Recent advances in carbon dioxide capture and utilization with amines and ionic liquids. Green. Ch. E. 1(1), 16–32 (2020). https://doi.org/10.1016/j.molliq.2021.117080

    Article  CAS  Google Scholar 

  2. N.W. Ockwig, T.M. Nenoff, Membranes for hydrogen separation. Chem. Rev. 107, 4078–4110 (2007). https://doi.org/10.1021/cr0501792

    Article  CAS  PubMed  Google Scholar 

  3. R.W. Spillman, Economics of gas separation membranes. Chem. Eng. Prog. 85, 41–62 (1989)

    CAS  Google Scholar 

  4. B.D. Freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 32(2), 375–380 (1999). https://doi.org/10.1021/ma9814548

    Article  CAS  Google Scholar 

  5. A.F. Ismail, L.I.B. David, A review on the latest development of carbon membranes for gas separation. J. Membr. Sci. 193(1), 1–18 (2001). https://doi.org/10.1016/S0376-7388(01)00510-5

    Article  CAS  Google Scholar 

  6. P.-S. Lee, D. Kim, S.-E. Nam, R.R. Bhave, Carbon molecular sieve membranes on porous composite tubular supports for high performance gas separations. Microporous Mesoporous Mater. 224, 332–338 (2016). https://doi.org/10.1016/j.micromeso.2015.12.054

    Article  CAS  Google Scholar 

  7. J. Koresh, A. Soffer, Molecular sieve carbon permselective membrane. Part I. Presentation of a new device for gas mixture separation. Sep. Sci. Technol. 18, 723–734 (1983). https://doi.org/10.1080/01496398308068576

    Article  CAS  Google Scholar 

  8. J. Koresh, A. Soffer, The carbon molecular sieve membranes. General properties and the permeability of CH4/H2 mixture. Sep. Sci. Technol. 22, 973–982 (1987). https://doi.org/10.1080/01496398708068993

    Article  CAS  Google Scholar 

  9. O. Karvan, J.R. Johnson, P.J. Williams, W.J. Koros, A pilot-scale system for carbon molecular sieve hollow fiber membrane manufacturing. Chem. Eng. Technol. 36(1), 53–61 (2013). https://doi.org/10.1002/ceat.201200503

    Article  CAS  Google Scholar 

  10. M. Yoshimune, K. Haraya, An approach toward the practical use of carbon membranes in gas separation processes. Membrnae 43(4), 137–141 (2018). https://doi.org/10.5360/membrane.43.137

    Article  Google Scholar 

  11. V.C. Geiszler, W.J. Koros, Effects of polyimide pyrolysis conditions on carbon molecular sieve membrane properties. Ind. Eng. Chem. Res. 35(9), 2999–3003 (1996). https://doi.org/10.1021/ie950746j

    Article  CAS  Google Scholar 

  12. M. Kiyono, P.J. Williams, W.J. Koros, Effect of polymer precursors on carbon molecular sieve structure and separation performance properties. Carbon 48(15), 4432–4441 (2010). https://doi.org/10.1016/j.carbon.2010.08.002

    Article  CAS  Google Scholar 

  13. R. Wu, W. Yue, Y. Li, A. Huang, Ultra-thin and high hydrogen permeable carbon molecular sieve membrane prepared by using polydopamine as carbon precursor. Mater. Lett. 295, 129863 (2021). https://doi.org/10.1016/j.matlet.2021.129863

    Article  CAS  Google Scholar 

  14. M. Yoshino, S. Nakamura, H. Kita, K. Okamoto, N. Tanihara, Y. Kusuki, Olefin/paraffin separation performance of carbonized membranes derived from an asymmetric hollow fiber membrane of 6FDA/BPDA-DDBT copolyimide. J. Membr. Sci. 215(1–2), 169–183 (2003). https://doi.org/10.1016/S0376-7388(02)00611-7

    Article  CAS  Google Scholar 

  15. S. Fu, G.B. Wenz, E.S. Sanders, S.S. Kulkarni, W. Qiu, C. Ma, W.J. Koros, Effects of pyrolysis conditions on gas separation properties of 6FDA/DETDA: DABA (3:2) derived carbon molecular sieve membranes. J. Membr. Sci. 520, 699–711 (2016). https://doi.org/10.1016/j.memsci.2016.08.013

    Article  CAS  Google Scholar 

  16. P.S. Tin, T.S. Chung, A.J. Hill, Advanced fabrication of carbon molecular sieve membranes by nonsolvent pretreatment of precursor polymers. Ind. Eng. Chem. Res. 43(20), 6476–6483 (2004). https://doi.org/10.1021/ie049606c

    Article  CAS  Google Scholar 

  17. J. Hayashi, H. Mizuta, M. Yamamoto, K. Kusakabe, S. Morooka, Pore size control of carbonized BPDA-pp´ODA polyimide membrane by chemical vapor deposition of carbon. J. Membr. Sci. 124(2), 243–251 (1997). https://doi.org/10.1016/S0376-7388(96)00250-5

    Article  CAS  Google Scholar 

  18. S. Haider, A. Lindbråthen, J.A. Lie, I.C.T. Andersen, M.-B. Hägg, CO2 separation with carbon membranes in high pressure and elevated temperature applications. Sep. Purif. Technol. 190, 177–189 (2018). https://doi.org/10.1016/j.seppur.2017.08.038

    Article  CAS  Google Scholar 

  19. M. Yoshimune, K. Haraya, Simple control of the pore structures and gas separation performances of carbon hollow fiber membranes by chemical vapor deposition of propylene. Sep. Purif. Technol. 223, 162–167 (2019). https://doi.org/10.1016/j.seppur.2019.04.065

    Article  CAS  Google Scholar 

  20. H.B. Park, Y.K. Kim, J.M. Lee, S.Y. Lee, Y.M. Lee, Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes. J. Membr. Sci. 229(1–2), 117–127 (2004). https://doi.org/10.1016/j.memsci.2003.10.023

    Article  CAS  Google Scholar 

  21. L.I.B. David, A.F. Ismail, Influence of thermastabilization process and soak time during pyrolysis process on the polyacrylonitrile carbon membranes for O2/N2 separation. J. Membr. Sci. 213(1–2), 285–291 (2003). https://doi.org/10.1016/S0376-7388(02)00513-6

    Article  CAS  Google Scholar 

  22. D.Q. Vu, W.J. Koros, S.J. Miller, High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes. Ind. Eng. Chem. Res. 41(3), 367–380 (2002). https://doi.org/10.1021/ie010119w

    Article  CAS  Google Scholar 

  23. M. Heinrich, H. Heinrich, K. Werner, P. Werner, J. Harald, K. Karl, Z. Dieter, Carbon containing molecular sieves. US Patent 3979330-A (1976).

  24. Y. Kawabuchi, H. Oka, S. Kawano, I. Mochida, N. Yoshizawa, The modification of pore size in activated carbon fibers by chemical vapor deposition and its effect on molecular sieve selectivity. Carbon 36(4), 377–382 (1998). https://doi.org/10.1016/S0008-6223(97)00186-3

    Article  CAS  Google Scholar 

  25. S. Villar-Rodil, R. Denoyel, J. Rouquerol, A. Martínez-Alonso, J.M.D. Tascón, Fibrous carbon molecular sieves by chemical vapor deposition of benzene. Gas separation ability. Chem. Mater. 14(10), 4328–4333 (2002). https://doi.org/10.1021/cm021193n

    Article  CAS  Google Scholar 

  26. J.H. Zhang, S.J. Qu, L.T. Li, P. Wang, X.F. Li, Y.F. Che, X.L. Li, Preparation of carbon molecular sieves used for CH4/N2 separation. J. Chem. Eng. Data 63(5), 1737–1744 (2018). https://doi.org/10.1021/acs.jced.8b00048

    Article  CAS  Google Scholar 

  27. T. Horikawa, J. Hayashi, K. Muroyama, Preparation of molecular sieving carbon from waste resin by chemical vapor deposition. Carbon 40(5), 709–714 (2002). https://doi.org/10.1016/S0008-6223(01)00157-9

    Article  CAS  Google Scholar 

  28. Y. Yamane, H. Tanaka, M.T. Miyahara, In silico synthesis of carbon molecular sieves for high-performance air separation. Carbon 141, 626–634 (2019). https://doi.org/10.1016/j.carbon.2018.10.021

    Article  CAS  Google Scholar 

  29. T. Ogoshi, K. Yoshikoshi, R. Sueto, H. Nishihara, T. Yamagishi, Porous carbon fibers containing pores with sizes controlled at the angstrom level by the cavity size of pillar [6] arene. Angew. Chem. Int. Ed. 54(22), 6466–6469 (2015). https://doi.org/10.1002/anie.201501854

    Article  CAS  Google Scholar 

  30. T. Ogoshi, Y. Sakatsume, K. Onishi, R. Tang, K. Takahashi, H. Nishihara, Y. Nishina, B.D.L. Campéon, T. Kakuta, T. Yamagishi, The carbonization of aromatic molecules with three-dimensional structures affords carbon materials with controlled pore sizes at the Ångstrom-Leve. Commun. Chem. 4, 75 (2021). https://doi.org/10.1038/s42004-021-00515-0

    Article  CAS  Google Scholar 

  31. K. Okamoto, S. Kawamura, M. Yoshino, H. Kita, Y. Hirayama, N. Tanihara, Y. Kusuki, Olefin/paraffin separation through carbonized membranes derived from an asymmetric polyimide hollow fiber membrane. Ind. Eng. Chem. Res. 38(11), 4424–4432 (1999). https://doi.org/10.1021/ie990209p

    Article  CAS  Google Scholar 

  32. P.H.T. Ngamou, M.E. Ivanova, O. Guillon, W.A. Meulenberg, High-performance carbon molecular sieve membranes for hydrogen purification and pervaporation dehydration of organic solvents. J. Mater. Chem. A 7, 7082–7091 (2019). https://doi.org/10.1039/C8TA09504C

    Article  CAS  Google Scholar 

  33. H. Richter, H. Voss, N. Kaltenborn, S. Kämnitz, A. Wollbrink, A. Feldhoff, J. Caro, S. Roitsch, I. Voigt, High-flux carbon molecular sieve membranes for gas separation. Angew. Chem. Int. Ed. 56(27), 7760–7763 (2017). https://doi.org/10.1002/anie.201701851

    Article  CAS  Google Scholar 

  34. L. Lei, F. Pan, A. Lindbråthen, X. Zhang, M. Hillestad, Y. Nie, L. Bai, X. He, M.D. Guiver, Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superior hydrogen separation. Nat. Commun. 12, 268 (2021). https://doi.org/10.1038/s41467-020-20628-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. L. Lei, A. Lindbråthen, M. Hillestad, X. He, Carbon molecular sieve membranes for hydrogen purification from a steam methane reforming process. J. Membr. Sci. 627, 119241 (2021). https://doi.org/10.1016/j.memsci.2021.119241

    Article  CAS  Google Scholar 

  36. S. Roy, R. Das, M.K. Gagrai, S. Sarkar, Preparation of carbon molecular sieve membrane derived from phenolic resin over macroporous clay-alumina based support for hydrogen separation. J. Porous Mater. 23(6), 1653–1662 (2016)

    Article  CAS  Google Scholar 

  37. S.C. Rodrigues, R. Whitley, A. Mendes, Preparation and characterization of carbon molecular sieve membranes based on resorcinol-formaldehyde resin. J. Membr. Sci. 459, 207–216 (2014)

    Article  CAS  Google Scholar 

  38. Y. Kusuki, H. Shimazaki, N. Tanihara, S. Nakanishi, T. Yoshinaga, Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane. J. Membr. Sci. 134(2), 245–253 (1997). https://doi.org/10.1016/S0376-7388(97)00118-X

    Article  CAS  Google Scholar 

  39. K. Haraya, H. Suda, H. Yanagishita, S. Matsuda, Asymmetric capillary membrane of a carbon molecular sieve. J. Chem. Soc. Chem. Commun. 17, 1781–1782 (1995). https://doi.org/10.1039/C39950001781

    Article  Google Scholar 

  40. J. Petersen, M. Matsuda, K. Haraya, Capillary carbon molecular sieve membranes derived from Kapton for high temperature gas separation. J. Membr. Sci. 131(1–2), 85–94 (1997). https://doi.org/10.1016/S0376-7388(97)00041-0

    Article  CAS  Google Scholar 

  41. X. He, M.-B. Hägg, Structural, kinetic and performance characterization of hollow fiber carbon membranes. J. Membr. Sci. 390–391, 23–31 (2012). https://doi.org/10.1016/j.memsci.2011.10.052

    Article  CAS  Google Scholar 

  42. M. Yoshimune, K. Haraya, CO2/CH4 mixed gas separation using carbon hollow fiber membranes. Energy Procedia. 37, 1109–1116 (2013). https://doi.org/10.1016/j.egypro.2013.05.208

    Article  CAS  Google Scholar 

  43. M. Yoshimune, K. Haraya, Flexible carbon hollow fiber membranes derived from sulfonated poly(phenylene oxide). Sep. Purif. Technol. 75(2), 193–197 (2010). https://doi.org/10.1016/j.seppur.2010.07.017

    Article  CAS  Google Scholar 

  44. N. Tanihaara, H. Shimazaki, Y. Hirayama, S. Nakanishi, T. Yoshinaga, Y. Kusuki, Gas permeation properties of asymmetric carbon hollow fiber membranes prepared from asymmetric hollow fiber. J. Membr. Sci. 160(2), 179–186 (1999). https://doi.org/10.1016/S0376-7388(99)00082-4

    Article  Google Scholar 

  45. C.W. Jones, W.J. Koros, Carbon composite membranes: a solution to adverse humidity effects. Ind. Eng. Chem. Res. 34(1), 164–167 (1995). https://doi.org/10.1021/ie00040a015

    Article  CAS  Google Scholar 

  46. C.W. Jones, W.J. Koros, Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors. Carbon 32(8), 1419–1425 (1994). https://doi.org/10.1016/0008-6223(94)90135-X

    Article  CAS  Google Scholar 

  47. C. Zhang, K. Zhang, Y. Cao, W.J. Koros, Composite carbon molecular sieve hollow fiber membranes: resisting support densification via silica particle stabilization. Ind. Eng. Chem. Res. 57(47), 16051–16058 (2018). https://doi.org/10.1021/acs.iecr.8b02386

    Article  CAS  Google Scholar 

  48. G.B. Wenz, W.J. Koros, Tuning carbon molecular sieves for natural gas separations: a diamine molecular approach. AIChE J. 63(2), 751–760 (2017). https://doi.org/10.1002/aic.15405

    Article  CAS  Google Scholar 

  49. N. Bhuwania, Y. Labreche, C.S.K. Achoundong, J. Baltazar, S.K. Burgess, S. Karwa, L. Xu, C.L. Henderson, P.J. Williams, W.J. Koros, Engineering substructure morphology of asymmetric carbon molecular sieve hollow fiber membranes. Carbon 76, 417–434 (2014). https://doi.org/10.1016/j.carbon.2014.05.008

    Article  CAS  Google Scholar 

  50. X. He, Y. Chu, A. Lindbrathen, M. Hillestad, M.-B. Hägg, Carbon molecular sieve membranes for biogas upgrading: techno-economic feasibility analysis. J. Clean. Prod. 194, 584–593 (2018). https://doi.org/10.1016/j.jclepro.2018.05.172

    Article  CAS  Google Scholar 

  51. S. Haider, A. Lindbråthen, M.-B. Hägg, Techno-economical evaluation of membrane based biogas upgrading system: a comparison between polymeric membrane and carbon membrane technology. Green Energy Environ. 1(3), 222–234 (2016). https://doi.org/10.1016/j.gee.2016.10.003

    Article  Google Scholar 

  52. I. Menendez, A.B. Fuertes, Aging of carbon membranes under different environments. Carbon 39(5), 733–740 (2001). https://doi.org/10.1016/S0008-6223(00)00188-3

    Article  CAS  Google Scholar 

  53. L. Xu, M. Rungta, J.V. Hessler, W. Qiu, M. Brayden, M. Martinez, G. Barbay, W.J. Koros, Physical aging in carbon molecular sieve membranes. Carbon 80, 155–166 (2014). https://doi.org/10.1016/j.carbon.2014.08.051

    Article  CAS  Google Scholar 

  54. O. Sanyal, C. Zhang, G.B. Wenz, S. Fu, N. Bhuwania, L. Xu, M. Rungta, W.J. Koros, Next generation membranes-using tailored carbon. Carbon 127, 688–698 (2018). https://doi.org/10.1016/j.carbon.2017.11.031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Yamaguchi University Organization for Research Initiatives for supporting SEM measurements, and we especially thank Mr. Nobuyuki Harada for providing useful advice on the preparation of SEM samples. We would also like to thank Editage (http://www.editage.com) for editing and reviewing this manuscript for English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Tanaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, J., Yoshizawa, N. & Tanaka, K. Effect of chemical vapor deposition of toluene on gas separation performance of carbon molecular sieve membranes. J Porous Mater 29, 393–404 (2022). https://doi.org/10.1007/s10934-021-01188-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01188-9

Keywords

Navigation