Skip to main content

Advertisement

Log in

Facile and cost-efficient synthesis of highly efficient CO2 adsorbents: a pathway towards a green environment

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The synthesis of highly efficient CO2 adsorbent derived from MOF coupled with graphene oxide, HKUST-1@GrO, is proposed at the room temperature to achieve the most desirability form an eco-environmental perspective. The modified Hummers method coupled with an ultra-fast MOF formation approach were explored to synthesis the superior CO2 adsorbent, i.e. HKUST-1@GrO. Then, the structure of adsorbent was deeply characterized by the application of different analyses including Fourier-Transform Infrared (FTIR) Spectroscopy, X-ray Diffraction (XRD), Brunauer–Emmett–Teller (BET), and Scanning Electron Microscopy (SEM). The optimization of CO2 adsorption was carried out under a broad range of temperatures (283–293 K) and pressures (1–10 bars). The N2 adsorption/desorption isotherms analysis indicated that loading of graphene oxide (3 wt%) on HKUST-1 increases its specific surface area from 1032 to 1354 m2/g. The maximum adsorption capacity of CO2 by HKUST-1@GrO composite at 283 K and 10 bars was evaluated equal to 12.44 mmol/g. Thermodynamic studies elucidated that the dominant CO2 adsorption was taken place as spontaneous, physisorption, and exothermic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MOFs :

Material organic frameworks

K:

Kelvin

HDSs :

Hydroxy double salts

P:

Pressure

RGO:

Reduced graphene oxide

Ps :

Equilibrium pressure of adsorption at standard pressure, bar

GrO:

Graphene oxide

q:

Amount of adsorbed, Mmol/g

BTC:

1,3,5-Benzenetricarboxylic acid

qm :

Maximum of CO2 adsorption capacity, mmol/g

DMF:

N, N-dimethylformamide

b:

Langmuir constant, 1/bar

SEM:

Scanning electron microscopy

KF :

Freundlich constant, [(mmol/g)(1/bar)(1/n)]

BET:

Brunauer–Emmett–Teller

n:

Freundlich exponent, dimensionless

FTIR:

Fourier-Transform infrared spectroscopy

∆G:

Gibbs free energy, kJ/mol

SRK:

Soave–Redlich–Kwong

∆Hads :

Isosteric heat of adsorption, kJ/mol

SBET :

Surface-specific area, m2/g

∆S:

Entropy changes, J/K·mol

Vtotal :

Total pore volume, cm3/g

T:

Temperature, K or °C

Vmeso :

Mesopore volume, cm3/g

R:

Gas constant, 8.314 J/K·mol

Vmicro :

Micropore volume, cm3/g

R2 :

Determination coefficient

References

  1. J.L. Míguez et al., Evolution of CO2 capture technology between 2007 and 2017 through the study of patent activity. Appl. Energy 211, 1282–1296 (2018)

    Google Scholar 

  2. F.M. Stuardi, F. MacPherson, J. Leclaire, Integrated CO2-capture and utilization: a priority research direction. Curr. Opin. Green Sustain. Chem. 16, 71–76 (2019)

    Google Scholar 

  3. C. Song et al., Alternative pathways for efficient CO2 capture by hybrid processes—a review. Renew. Sustain. Energy Rev. 82, 215–231 (2018)

    CAS  Google Scholar 

  4. K. Kamarudin, N. Zaini, N. Khairuddin, CO2 removal using amine-functionalized kenaf in pressure swing adsorption system. J. Environ. Chem. Eng. 6(1), 549–559 (2018)

    CAS  Google Scholar 

  5. A. Heidari et al., Evaluation of CO2 adsorption with eucalyptus wood based activated carbon modified by ammonia solution through heat treatment. Chem. Eng. J. 254, 503–513 (2014)

    CAS  Google Scholar 

  6. V.V.E. Butova et al., Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russ. Chem. Rev. 85(3), 280–307 (2016)

    CAS  Google Scholar 

  7. Y. Lin et al., Polyethyleneimine incorporated metal-organic frameworks adsorbent for highly selective CO 2 capture. Sci. Rep. 3, 1859 (2013)

    PubMed  PubMed Central  Google Scholar 

  8. X. Yan et al., Extremely enhanced CO2 uptake by HKUST-1 metal–organic framework via a simple chemical treatment. Microporous Mesoporous Mater. 183, 69–73 (2014)

    CAS  Google Scholar 

  9. H. Zhao et al., In situ hydrothermal synthesis of tetrazole coordination polymers with interesting physical properties. Chem. Soc. Rev. 37(1), 84–100 (2008)

    PubMed  Google Scholar 

  10. T. Gadzikwa et al., Selective bifunctional modification of a non-catenated metal− organic framework material via “click” chemistry. J. Am. Chem. Soc. 131(38), 13613–13615 (2009)

    CAS  PubMed  Google Scholar 

  11. G. Zhu et al., Microwave assisted synthesis of reduced graphene oxide incorporated MOF-derived ZnO composites for photocatalytic application. Catal. Commun. 88, 5–8 (2017)

    CAS  Google Scholar 

  12. R. Zou et al., Storage and separation applications of nanoporous metal–organic frameworks. CrystEngComm 12(5), 1337–1353 (2010)

    CAS  Google Scholar 

  13. F. Israr et al., High yield synthesis of Ni-BTC metal–organic framework with ultrasonic irradiation: role of polar aprotic DMF solvent. Ultrason. Sonochem. 31, 93–101 (2016)

    CAS  PubMed  Google Scholar 

  14. Y. Li et al., Mechanochemical synthesis of Cu-BTC@GO with enhanced water stability and toluene adsorption capacity. Chem. Eng. J. 298, 191–197 (2016)

    CAS  Google Scholar 

  15. Y. Chen et al., High efficiency synthesis of HKUST-1 under mild conditions with high BET surface area and CO2 uptake capacity. Prog. Nat. Sci. 28(5), 584–589 (2018)

    CAS  Google Scholar 

  16. J. Zhao et al., Facile conversion of hydroxy double salts to metal–organic frameworks using metal oxide particles and atomic layer deposition thin-film templates. J. Am. Chem. Soc. 137(43), 13756–13759 (2015)

    CAS  PubMed  Google Scholar 

  17. Y. Chen et al., A new MOF-505@GO composite with high selectivity for CO2/CH4 and CO2/N2 separation. Chem. Eng. J. 308, 1065–1072 (2017)

    CAS  Google Scholar 

  18. S.-C. Wu et al., Synthesis of aluminum-based MOF/graphite oxide composite and enhanced removal of methyl orange. J. Alloys Compd. 724, 625–632 (2017)

    CAS  Google Scholar 

  19. H. Hsu et al., Application of graphene oxide aerogel to the adsorption of polycyclic aromatic hydrocarbons emitted from the diesel vehicular exhaust. J. Environ. Chem. Eng. 7, 103414 (2019)

    CAS  Google Scholar 

  20. D.C. Marcano et al., Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010)

    CAS  PubMed  Google Scholar 

  21. L. Shahriary, A.A. Athawale, Graphene oxide synthesized by using modified hummers approach. Int. J. Renew. Energy Environ. Eng. 2(01), 58–63 (2014)

    Google Scholar 

  22. H. Li et al., Ultrafast room temperature synthesis of novel composites Imi@ Cu-BTC with improved stability against moisture. Chem. Eng. J. 307, 537–543 (2017)

    CAS  Google Scholar 

  23. F. Xu et al., Ultrafast room temperature synthesis of GrO@HKUST-1 composites with high CO2 adsorption capacity and CO2/N2 adsorption selectivity. Chem. Eng. J. 303, 231–237 (2016)

    CAS  Google Scholar 

  24. M. Nowrouzi, H. Younesi, N. Bahramifar, High efficient carbon dioxide capture onto as-synthesized activated carbon by chemical activation of Persian Ironwood biomass and the economic pre-feasibility study for scale-up. J. Clean. Prod. 168, 499–509 (2017)

    CAS  Google Scholar 

  25. X. Zhou et al., Thermodynamics for the adsorption of SO2, NO and CO2 from flue gas on activated carbon fiber. Chem. Eng. J. 200, 399–404 (2012)

    Google Scholar 

  26. N. Can, B.C. Ömür, A. Altındal, Modeling of heavy metal ion adsorption isotherms onto metallophthalocyanine film. Sens. Actuators B 237, 953–961 (2016)

    CAS  Google Scholar 

  27. M. Nowrouzi, H. Younesi, N. Bahramifar, Superior CO2 capture performance on biomass-derived carbon/metal oxides nanocomposites from Persian ironwood by H3PO4 activation. Fuel 223, 99–114 (2018)

    CAS  Google Scholar 

  28. S.N. Alam, N. Sharma, L. Kumar, Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 6(01), 1–18 (2017)

    CAS  Google Scholar 

  29. J. Cheng et al., Preparation of a Cu(BTC)-rGO catalyst loaded on a Pt deposited Cu foam cathode to reduce CO2 in a photoelectrochemical cell. RSC Adv. 8(56), 32296–32303 (2018)

    CAS  Google Scholar 

  30. L.H. Wee et al., Fine tuning of the metal–organic framework Cu 3 (BTC) 2 HKUST-1 crystal size in the 100 nm to 5 micron range. J. Mater. Chem. 22(27), 13742–13746 (2012)

    CAS  Google Scholar 

  31. S. Homayoonnia, S. Zeinali, Design and fabrication of capacitive nanosensor based on MOF nanoparticles as sensing layer for VOCs detection. Sens. Actuators B 237, 776–786 (2016)

    CAS  Google Scholar 

  32. W. Huang et al., Preparation and adsorption performance of GrO@Cu-BTC for separation of CO2/CH4. Ind. Eng. Chem. Res. 53(27), 11176–11184 (2014)

    CAS  Google Scholar 

  33. M. Gimeno-Fabra et al., Instant MOFs: continuous synthesis of metal–organic frameworks by rapid solvent mixing. Chem. Commun. 48(86), 10642–10644 (2012)

    CAS  Google Scholar 

  34. C. Fu et al., Evaluation and characterization of reduced graphene oxide nanosheets as anode materials for lithium-ion batteries. Int. J. Electrochem. Sci. 8(5), 6269–6280 (2013)

    CAS  Google Scholar 

  35. Z. ALOthman, A review: fundamental aspects of silicate mesoporous materials. Materials. 5(12), 2874–2902 (2012)

    CAS  PubMed Central  Google Scholar 

  36. M. Thommes et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015)

    CAS  Google Scholar 

  37. X. Zhou et al., A novel MOF/graphene oxide composite GrO@MIL-101 with high adsorption capacity for acetone. J. Mater. Chem. A 2(13), 4722–4730 (2014)

    CAS  Google Scholar 

  38. Z. Asadi-Sangachini et al., The feasibility of cost-effective manufacturing activated carbon derived from walnut shells for large-scale CO2 capture. Environ. Sci. Pollut. Res. 26(26), 26542–26552 (2019)

    CAS  Google Scholar 

  39. H. Frost, T. Düren, R.Q. Snurr, Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal− organic frameworks. J Phys. Chem. B 110(19), 9565–9570 (2006)

    CAS  PubMed  Google Scholar 

  40. S. Rangabhashiyam, N. Selvaraju, Efficacy of unmodified and chemically modified Swietenia mahagoni shells for the removal of hexavalent chromium from simulated wastewater. J. Mol. Liq. 209, 487–497 (2015)

    CAS  Google Scholar 

  41. L.A. Rodrigues et al., Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds. Chem. Eng. J. 174(1), 49–57 (2011)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazaher Moeinaddini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei Mohammadabad, M., Moeinaddini, M., Nowrouzi, M. et al. Facile and cost-efficient synthesis of highly efficient CO2 adsorbents: a pathway towards a green environment. J Porous Mater 27, 1659–1668 (2020). https://doi.org/10.1007/s10934-020-00945-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00945-6

Keywords

Navigation