Skip to main content

Advertisement

Log in

Co-precipitation synthesis of mesoporous maghemite for catalysis application

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Mesoporous magnetic nanoparticles (MNPs) were synthesized using the chemical co-precipitation method. The structure, morphology and magnetic properties of the MNPs were examined by X-ray diffraction (XRD), Mossbauer spectroscopy (MS), Brunauer–Emmett–Teller (BET) method, Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometer (VSM). The results of XRD and MS indicated that the MNPs were composed of γ-Fe2O3. TEM microphotography showed that the magnetic material was an aggregate of small spherical particles with a size of 6–12 nm. According to the BET data, the agglomeration of individual maghemite nanoparticles lead to formation of a complex mesoporous structure with the specific surface area of 88.3 m2 g−1. The average pore diameter was 5–7 nm, which correlates with the γ-Fe2O3 particles size. The VSM measurement (MS = 40.54 emu g−1, Mr = 5.27 emu g−1, HC = 88 Oe) indicated that the γ-Fe2O3 exhibited weak ferromagnetic and soft magnetic properties confirming the agglomeration of the small γ-Fe2O3 nanoparticles. The synthesized mesoporous maghemite showed excellent ability to absorb polymer protected colloidal palladium particles (Pd-PAM). The magnetic properties of MNPs were not significantly changed after modification with Pd-PAM. The resulting catalyst of Pd-PAM/MNPs showed activity (WC≡C = 3.3 × 10–6 mol s−1) and selectivity (93%) in the hydrogenation of phenylacetylene under mild conditions of 40 °C and 0.1 MPa. The Pd-PAM/MNPs catalyst can be easily recovered with an external magnet and reused for at least seven runs without significant degradation in the catalytic activity and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.M. Abu-Dief, S.M. Abdel-Fatah, Beni-Suef Univ. J. Basic Appl. Sci. 7, 55 (2018)

    Article  Google Scholar 

  2. M.B. Gawande, A.K. Rathi, P.S. Branco, R.S. Varma, Appl. Sci. 3, 656 (2013)

    Article  CAS  Google Scholar 

  3. J. Govan, Y.K. Gun’ko, Nanomaterials 4, 222 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. A. Akbarzadeh, M. Samiei, S. Davaran, Nanoscale Res. Lett. 7, 144 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. O.R. Egunova, T.A. Konstantinova, S.N. Shtykov, Magnetic nanoparticles in separation and preconcentration, Izvestiya of Saratov University. New series. Ser. Chem. Biol. Ecol. (Russia) 14(4), 27 (2014). (In Russian)

    Google Scholar 

  6. L. Mohammed, H.G. Gomaa, D. Ragab, J. Zhu, Particuology 30, 1 (2017)

    Article  CAS  Google Scholar 

  7. S. Majidi, F. Zeinali Sehrig, S.M. Farkhani, M. Soleymani Goloujeh, A. Akbarzadeh, Artificial cells. Nanomed. Biotechnol. 44(2), 722 (2014)

    Google Scholar 

  8. A.-H. Lu, E.L. Salabas, F. Schuth, Angew. Chem. Int. Ed. 46, 1222 (2007)

    Article  CAS  Google Scholar 

  9. W. Wu, Z. Wu, T. Yu, C. Jiang, W.-S. Kim, Sci. Technol. Adv. Mater. 16, 023501 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. W. Wu, Q. He, C. Jiang, Nanoscale Res. Lett. 3, 397 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. M.C. Mascolo, Y. Pei, T.A. Ring, Materials 6, 5549 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Y. Wei, B. Han, X. Hu, Y. Lin, X. Wang, X. Deng, Procedia Eng. 27, 632 (2012)

    Article  CAS  Google Scholar 

  13. M.I. Majeed, J. Guo, W. Yan, B. Tan, Polymers 8(11), 392 (2016)

    Article  PubMed Central  CAS  Google Scholar 

  14. M. Nazari, N. Ghasemi, H. Maddah, M.M. Motlagh, J. Nanostruct. Chem. (2014). https://doi.org/10.1007/s40097-014-0099-9

    Article  Google Scholar 

  15. R.A. Bohara, N.D. Thorat, S.H. Pawar, RSC Adv. 6, 43989 (2016)

    Article  CAS  Google Scholar 

  16. L.M. Rossi, N.J.S. Costa, F.P. Silva, R. Wojcieszak, Green Chem. 16, 2906 (2014)

    Article  CAS  Google Scholar 

  17. S.-W. Chen, Z.-C. Zhang, N.-N. Zhai, C.-M. Zhong, S. Lee, Tetrahedron 71(4), 648 (2015)

    Article  CAS  Google Scholar 

  18. J. Zhao, Y. Gui, Y. Liu, G. Wang, H. Zhang, Y. Sun, Sh Fang, Catal. Lett. 147, 1127 (2017)

    Article  CAS  Google Scholar 

  19. R.B. Nasir Baig, R.S. Varma, ACS Sust. Chem. Eng. 2, 2155 (2014)

    Article  CAS  Google Scholar 

  20. M. Neamtu, C. Nadejde, V. Hodoroaba, R.J. Schneider, L. Verestiuc, U. Panne, Sci. Rep. 8, 6278 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. M. Zeltner, A. Schatz, M.L. Hefti, W.J. Stark, J. Mater. Chem. 21, 2991 (2011)

    Article  CAS  Google Scholar 

  22. E.T. Talgatov, A.S. Auyezkhanova, K.S. Seitkalieva, S.N. Akhmetova, A.К. Zharmagambetova, Theor. Exp. Chem. 55, 331 (2019)

    Article  CAS  Google Scholar 

  23. E.T. Talgatov, A.S. Auyezkhanova, N.Z. Tumabayev, S.N. Akhmetova, K.S. Seitkalieva, Y.A. Begmat, A.К. Zharmagambetova, News of NAS RK. Ser. Chem. Technol. 6, 29 (2018)

    Article  CAS  Google Scholar 

  24. R. Massart, IEEE Trans. Magn. 17, 1247 (1981)

    Article  Google Scholar 

  25. M. Krishna Surendra, S. Annapoorani, E.B. Ansar, P.R. Harikrishna Varma, M.S. Ramachandra Rao, J. Nanopart. Res. 16, 2773 (2014)

    Article  CAS  Google Scholar 

  26. L. Li, D. Chen, Y. Zhang, Z. Deng, X. Ren, X. Meng, F. Tang, J. Ren, L. Zhang, Nanotechnology 18, 405102 (2007)

    Article  CAS  Google Scholar 

  27. H. Montaseri, S. Alipour, M.A. Vakilinezhad, Res. Pharm. Sci. 12(4), 274 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  28. A.K. Zharmagambetova, K.S. Seitkalieva, E.T. Talgatov, A.S. Auezkhanova, G.I. Dzhardimalieva, A.D. Pomogailo, Kinet. Catal. 57, 360 (2016)

    Article  CAS  Google Scholar 

  29. I. Kazeminezhad, S. Mosivand, Acta Phys. Polonica A 125, 1210 (2014)

    Article  CAS  Google Scholar 

  30. W. Kim, C.-Y. Suh, S.-W. Cho, K.-M. Roh, H. Kwon, K. Song, I.-J. Shon, Talanta 94, 348 (2012)

    Article  CAS  PubMed  Google Scholar 

  31. S. Navaladian, B. Viswanathan, T.K. Varadarajan, R.P. Viswanath, Nanoscale Res. Lett. 4(2), 181 (2009)

    Article  CAS  Google Scholar 

  32. W. Cheng, K. Tang, Y. Qi, J. Sheng, Z. Liu, J. Mater. Chem. 20, 1799 (2010)

    Article  CAS  Google Scholar 

  33. K.A. Kydralieva, G.I. Dzhardimalieva, A.A. Yurishcheva, S.J. Jorobekova, J. Inorg. Organomet. Polym. 26, 1212 (2016)

    Article  CAS  Google Scholar 

  34. N.E. Gervits, A.A. Gippius, A.V. Tkachev, E.I. Demikhov, S.S. Starchikov, I.S. Lyubutin, A.L. Vasiliev, V.P. Chekhonin, M.A. Abakumov, A.S. Semkina, A.G. Mazhuga, Beilstein J. Nanotechnol. 10, 1964 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. I.S. Lyubutin, S.S. Starchikov, C.-R. Lin, N.E. Gervits, NYu Korotkov, T.V. Bukreeva, Croat. Chem. Acta 88(4), 397 (2015)

    Article  CAS  Google Scholar 

  36. I.N. Zakharova, M.A. Shipilin, V.P. Alekseev, A.M. Shipilin, Techn. Phys. Lett. 38(1), 55 (2012)

    Article  CAS  Google Scholar 

  37. M.I. Khalil, Arab. J. Chem. 8, 279 (2015)

    Article  CAS  Google Scholar 

  38. K. Woo, J. Hong, S. Choi, H.-W. Lee, J.-P. Ahn, C.S. Kim, S.W. Lee, Chem. Mater. 16, 2814 (2004)

    Article  CAS  Google Scholar 

  39. I.S. Lyubutin, S.S. Starchikov, T.V. Bukreeva, I.A. Lysenko, S.N. Sulyanov, N.Y. Korotkov, S.S. Rumyantseva, I.V. Marchenko, K.O. Funtov, A.L. Vasiliev, Mater. Sci. Eng. C 45, 225 (2014)

    Article  CAS  Google Scholar 

  40. L. Gutiérrez, L. de la Cueva, M. Moros, E. Mazario, S. de Bernardo, J.M. de la Fuente, M.P. Morales, G. Salas, Nanotechnology 30(11), 112001 (2019)

    Article  PubMed  CAS  Google Scholar 

  41. V.A.J. Silva et al., Magnetic and Mössbauer studies of fucan-coated magnetite nanoparticles for application on antitumoral activity, in LACAME 2012, ed. by C.A.B. Meneses, E.P. Caetano, C.E.R. Torres, C. Pizarro, L.E.Z. Alfonso (Springer, Dordrecht, 2013)

    Google Scholar 

  42. V.A.J. Silva, P.L. Andrade, M.P.C. Silva, A. Bustamante, L. De Los Santos Valladares, J. Albino, J. Magn. Magn. Mater. 343, 138 (2013)

    Article  CAS  Google Scholar 

  43. W. Wu, X.H. Xiao, S.F. Zhang, T.C. Peng, J. Zhou, F. Ren, C.Z. Jiang, Nanoscale Res. Lett. 5, 1474 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. D. Cao, H. Li, L. Pan, J. Li, X. Wang, P. Jing, X. Cheng, W. Wang, J. Wang, Q. Liu, Sci. Rep. 6, 32360 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. M.U. Zulfiqar, M.U. Rahman, M. Usman, S.K. Hasanain, A. Ullah, I.W. Kim, J. Korean Phys. Soc. 65, 1925 (2014)

    Article  CAS  Google Scholar 

  46. J. Choi, Y. Han, S. Park, J. Park, H. Kim, J. Nanomater. 2014, 580347 (2014)

    Article  CAS  Google Scholar 

  47. F. Sotomayor, K.A. Cychosz, M. Thommes, Acc. Mater. Surf. Res. 3(2), 34 (2018)

    Google Scholar 

  48. W. Wu, X. Xiao, S. Zhang, L. Fan, T. Peng, F. Ren, C. Jiang, Nanoscale Res. Lett. 5, 116 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. R. Kosydar, M. Goral, A. Drelinkiewicz, J. Stejskal, Chem. Papers 67(8), 1087 (2013)

    Article  CAS  Google Scholar 

  50. L.B. Belykh, N.I. Skripov, T.P. Sterenchuk, K.L. Gvozdovskaya, S.B. Sanzhieva, F.K. Schmidt, J. Nanopart. Res. 21, 198 (2019)

    Article  CAS  Google Scholar 

  51. Z. Ahmed, E.A. Gooding, K.V. Pimenov, L. Wang, S.A. Asher, J. Phys. Chem. B 113(13), 4248 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. H.A. Al-Wadhaf, Catal. Ind. 7, 234 (2015)

    Article  Google Scholar 

  53. C. Evangelisti, N. Panziera, A. D’Alessio, L. Bertinetti, M. Botavina, G. Vitulli, J. Catal. 272, 246 (2010)

    Article  CAS  Google Scholar 

  54. F.P. da Silva, L.M. Rossi, Tetrahedron 70, 3314 (2014)

    Article  CAS  Google Scholar 

  55. N.V. Kuchkina, EYu Yuzik-Klimova, S.A. Sorokina, A.S. Peregudov, DYu Antonov, S.H. Gage, B.S. Boris, L.Z. Nikoshvili, E.M. Sulman, D.G. Morgan, W.E. Mahmoud, A.A. Al-Ghamdi, L.M. Bronstein, Z.B. Shifrina, Macromolecules 46, 5890 (2013)

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out with the financial support of the State Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan (Grant AR05130377).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eldar T. Talgatov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talgatov, E.T., Auyezkhanova, A.S., Seitkalieva, K.S. et al. Co-precipitation synthesis of mesoporous maghemite for catalysis application. J Porous Mater 27, 919–927 (2020). https://doi.org/10.1007/s10934-020-00869-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00869-1

Keywords

Navigation