Skip to main content
Log in

Effect of pore architecture on the mesenchymal stem cell responses to graphene/polycaprolactone scaffolds prepared by solvent casting and robocasting

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In the study graphene-containing porous, three dimensional polycaprolactone (PCL) scaffolds were prepared by solvent casting-salt leaching and robocasting methods for tissue engineering applications. Graphene nanopowders in the form of nanoflakes were incorporated into the polymer matrix at different concentrations namely 1, 3, 5 and 10 wt%. The dichloromethane was used as the solvent and sodium chloride crystals were utilized as the water-soluble porogen for the formation of an interconnected porous network (with non-oriented pores) inside the composite scaffolds in solvent casting-salt leaching method. On the other hand, acetone was utilized as solvent and PCL solutions were prepared at 20 wt% in robocasting method to construct scaffolds (with oriented pores) having a grid-like structure. The biological response of bone marrow mesenchymal stem cells seeded on these composite constructs having different architecture were tested using MTT method, live-dead cell viability assay and Alcian blue stanining. Cytotoxicity experiments revealed that mesenchymal stem cells did not show toxic response to composite robocast scaffolds. Cells proliferate and differentiate well on the surface of the robocast scaffolds compared to solvent-cast scaffolds under the same conditions. Results showed that scaffolds prepared in the study have potential to be used in cartilage tissue engineering in the presence of electric stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B.P. Chan, K.W. Leong, Eur. Spine J. 17(Suppl 4), S467–S479 (2008)

    Google Scholar 

  2. V. Karageorgiou, D. Kaplan, Biomaterials 26, 5474–5491 (2005)

    CAS  PubMed  Google Scholar 

  3. M.I. Gariboldi, S.M. Best, Front. Bioeng. Biotechnol. 3, 151 (2015)

    PubMed  PubMed Central  Google Scholar 

  4. T.M.G. Chu, D.G. Orton, S.J. Hollister, S.E. Feinberg, J.W. Holloran, Biomaterials 23, 1283–1293 (2002)

    CAS  PubMed  Google Scholar 

  5. C.M. Bidan, K.P. Kommareddy, M. Rumpler, P. Kollmannsberger, P. Fratzl, J.W. Dunlop, Adv. Healthc. Mater. 2(1), 186–194 (2013)

    CAS  PubMed  Google Scholar 

  6. K. Kim, A. Yeatts, D. Dean, J. Fisher, Tissue Eng. B 16, 523–539 (2010)

    CAS  Google Scholar 

  7. J.H. Kühne, R. Bartl, B. Frisch, C. Hammer, V. Jansson, M. Zimmer, Acta Orthop. 65, 246–252 (1994)

    Google Scholar 

  8. Y. Zhang, W. Fan, Z. Ma, C. Wu, W. Fang, G. Liu, Y. Xiao, Acta Biomater. 6, 3021–3028 (2010)

    CAS  PubMed  Google Scholar 

  9. H. Chang, Y. Wang, In Tech 569–588 (2011)

  10. M.L.A. Silva, A. Martins, A.R. Costa-Pinto, P. Costa, S. Faria, M. Gomes, R.L. Reis, N.V. Neves, Biomacromol 11(12), 3228–3236 (2010)

    Google Scholar 

  11. C. Leber, H. Choi, S. Bose, A. Bandyopadhyay, Mater. Sci. Eng. C 30(1), 71–77 (2010)

    CAS  Google Scholar 

  12. A. Phadke, Y.S. Hwang, S.H. Kim, S.H. Kim, T. Yamaguchi, K. Masuda, S. Varghese, Eur. Cells Mater. 25, 114–129 (2013)

    CAS  Google Scholar 

  13. K.-W. Lee, S. Wang, M.J. Yaszemski, L. Lu, Biomacromol 11(3), 682–689 (2010)

    CAS  Google Scholar 

  14. C.G. Jeong, S.J. Hollister, Biomaterials 31(15), 4304–4312 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. J.M. Williams, A. Adewunmi, R.M. Scheka, C.L. Flanagan, P.H. Krebsbacha, S.E. Feinberg, S.J. Hollister, S. Das, Biomaterials 26, 4817–4827 (2005)

    CAS  PubMed  Google Scholar 

  16. T.K. Dash, V.B. Konkimalla, Mol. Pharm. 9, 2365–2379 (2012)

    CAS  PubMed  Google Scholar 

  17. N. Thadavirul, P. Pavasant, P. Supaphol, J. Biomed. Mater. Res. A 102, 103379–103392 (2014)

    Google Scholar 

  18. N. Dubey, R. Bentini, I. Islam, T. Cao, A.H.C. Neto, Rosa V. Stem Cells Int. (2015). https://doi.org/10.1155/2015/804213

    Article  PubMed  PubMed Central  Google Scholar 

  19. A.N. Banerjee, Interface Focus 8, 20170056 (2018)

    PubMed  PubMed Central  Google Scholar 

  20. S. Kumar, K. Chatterjee, ACS Appl. Mater. Interfaces 8, 26431–26457 (2016)

    CAS  PubMed  Google Scholar 

  21. S. Priyadarsini, S. Mohanty, S. Mukherjee, S. Basu, M. Mishra, J. Nanostruct. Chem. 8(2), 123–137 (2018)

    CAS  Google Scholar 

  22. R. Singh, S. Sansare, S. Shidhaye, Chapter 12: biomedical application of graphenes, in Biomedical Applications of Nanoparticles, ed. by A.M. Grumezescu (William Andrew Publishing, New York, 2019), pp. 319–339

    Google Scholar 

  23. N. Shadjou, M.D. Hasanzadeh, J. Biomed. Mater. Res. A 104A, 1250–1275 (2016)

    Google Scholar 

  24. S. Ryu, B.S. Kim, Tissue Eng. Regen. Med. 10, 39–46 (2013)

    CAS  Google Scholar 

  25. S. Juqing, H. Gao, G. Zhu, X. Cao, X. Shi, Y. Wang, Carbon 95, 1039–1050 (2015)

    Google Scholar 

  26. A.M. Deliormanlı, H. Atmaca, J. Polym. Mater. Polym. Biomater. (2018). https://doi.org/10.1080/00914037.2018.1539984

    Article  Google Scholar 

  27. A.M. Deliormanlı, H. Atmaca, J. Appl. Biochem. Biotechnol. 186(4), 972–989 (2018)

    Google Scholar 

  28. J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg, S.J. Hollister, S. Das, Biomaterials 26, 4817–4827 (2005)

    CAS  PubMed  Google Scholar 

  29. A.M. Deliormanlı, J. Appl. Biochem. Biotechnol. 188(4), 1117–1133 (2019)

    Google Scholar 

  30. B. Dorj, J.E. Won, J.H. Kim, S.J. Choi, U.S. Shin, H.W. Kim, J. Biomed. Mater. Resour. A 101, 1670–1682 (2013)

    Google Scholar 

  31. S.A. Park, S.H. Lee, W.D. Kim, Bioprocess. Biosyst. Eng. 34, 505–513 (2011)

    PubMed  Google Scholar 

  32. J.-W. Kim, K.-H. Shin, Y.-H. Koh, M.J. Hah, J. Moon, H.-E. Kim, Materials 10, 1123 (2017)

    PubMed Central  Google Scholar 

  33. D.W. Hutmacher, T. Schantz, I. Zein, K.W. Ng, S.H. Teoh, K.C. Tan, J. Biomed. Mater. Resour. A 55, 203–216 (2001)

    CAS  Google Scholar 

  34. W. Zhang, I. Ullah, L. Shi, Y. Zhang, H. Ou, J. Zhou, M.W. Ullah, X. Zhang, W. Li, Mater. Des. 180, 107946 (2019)

    CAS  Google Scholar 

  35. S. Salerno, E. Di Maio, S. Iannace, P.A. Netti, J. Porous Mater. 19(2), 181–188 (2012)

    CAS  Google Scholar 

  36. A.R. Jabur, E.S. Al-Hassani, A.M. Al-Shammari, M.A. Najim, A.A. Hassan, A.A. Ahmed, Energy Procedia 119, 61–71 (2017)

    CAS  Google Scholar 

  37. B. Dhandayuthapani, Y. Yoshida, T. Maekawa, D.S. Kumar, Int. J. Polym. Sci. Article ID 290602 (2011)

  38. P.L. Heseltine, J. Ahmed, M. Edirisinghe, Macromol. Mater. Eng. 303, 1800218 (2018)

    Google Scholar 

  39. Z. Pan, P. Duan, X. Liu, H. Wang, L. Cao, Y. He, J. Dong, J. Ding, Regener. Biomater. 2(1), 9–19 (2015)

    CAS  Google Scholar 

  40. J. Zeltinger, J.K. Sherwood, D.A. Graham et al., Tissue Eng. 7, 557–572 (2001)

    CAS  PubMed  Google Scholar 

  41. J. Xie, M. Ihara, Y.M. Jung et al., Tissue Eng. 12, 449–458 (2006)

    CAS  PubMed  Google Scholar 

  42. I.O. Smith, X.H. Liu, L.A. Smith, P.X. Ma, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 226–236 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. I. Bružauskaitė, D. Bironaitė, E. Bagdonas, E. Bernotienė, Cytotechnology 68(3), 355–369 (2016)

    PubMed  Google Scholar 

  44. P. Joly, G.N. Duda, M. Schöne, P.B. Welzel, U. Freudenberg, C. Werner, A. Petersen, PLoS ONE 8(9), e73545 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. S.H. Oh, T.H. Kim, G.I. Im, J.H. Lee, Biomacromol 11, 1948–1955 (2010)

    CAS  Google Scholar 

  46. K. Uematsu, K. Hattori, Y. Ishimoto, J. Yamauchia, T. Habata, Y. Takakura, H. Ohgushi, T. Fukuchi, M. Sato, Biomaterials 26, 4273–4279 (2005)

    CAS  PubMed  Google Scholar 

  47. J.M. Kemppainen, S. Hollister, J. Biomater. 31, 279–287 (2010)

    CAS  Google Scholar 

  48. S.M. Li, X.H. Chen, R.A. Gross, S.P. McCarthy, J. Mater. Sci. 11, 227–233 (2000)

    CAS  Google Scholar 

  49. M. Htay, Water vapour transmission and degradation properties of biaxially stretched PCL films and cell-permeable membranes. ScholarBank@NUS Repository, Master's Thesis (2004)

  50. E. Saito, Y. Liu, F. Migneco, S.J. Hollister, Acta Biomater. 8, 2568–2577 (2012)

    CAS  PubMed  Google Scholar 

  51. M.J. Jenkins, K.L. Harrison, Polym. Adv. Technol. 19(12), 1901–1906 (2008)

    CAS  Google Scholar 

  52. E.K. Kostakova, L. Meszaros, G. Maskova, L. Blazkova, T. Turcsan, D. Lukas, J. Nanomater. 2017, Article ID 8952390 (2017)

  53. B. Zhang, P. Wei, Z. Zhou, T. Wei, Adv. Drug Delivery Rev. 105(B), 145–162 (2016)

    CAS  Google Scholar 

  54. A. Matsiko, J. Gleeson, F.J. O'Brien, Tissue Eng. A 21(3–4), 486–497 (2015)

    CAS  Google Scholar 

  55. M.M. Nava, L. Draghi, C. Giordano, R. Pietrabissa, J. Appl. Biomater. Funct. Mater. 14(3), e223–e229 (2016)

    CAS  PubMed  Google Scholar 

  56. C.M. Murphy, M.G. Haugh, F.J. O'Brien, Biomaterials 31(3), 461–466 (2010)

    CAS  PubMed  Google Scholar 

  57. J. Zeltinger, J.K. Sherwood, D.A. Graham, R. Müeller, L.G. Griffith, Tissue Eng. 7, 6 (2001)

    Google Scholar 

  58. G.N. Attik, K. Gritsch, P. Colon, B. Grosgogeat, J. Vis. Exp. 9(93), e51949 (2014)

    Google Scholar 

  59. S. Björnsson, Anal. Biochem. 256(2), 229–237 (1998)

    PubMed  Google Scholar 

  60. K. Wong, C. Lee, K.P. Loh, C.T. Lim, Biomaterials 155, 236–250 (2018)

    Google Scholar 

  61. S.Y. Park, J. Park, S.H. Sim, M.G. Sung, K.S. Kim, B.H. Hong, S. Hong, Adv. Mater. 23, 36 (2011)

    Google Scholar 

  62. T.R. Nayak, H. Andersen, V.S. Makam, C. Khaw, S. Bae, X. Xu, P.-L.R. Ee, J.-H. Ahn, B.H. Hong, G. Pastorin, ACS Nano 5(6), 4670–4678 (2011)

    CAS  PubMed  Google Scholar 

  63. A.F. Verre, A. Faroni, M. Iliut, C. Silva, C. Muryn, A.J. Reid, A. Vijayaraghavan, Interface Focus 8(3), 20180002 (2018)

    PubMed  PubMed Central  Google Scholar 

  64. E. Garcia-Alegria, M. Iliut, M. Stefanska, C. Silva, S. Heeg, S.J. Kimber, V. Kouskoff, G. Lacaud, A. Vijayaraghavan, K. Batta, Sci. Rep. 6, 25917 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  65. S. Yamane, N. Iwasaki, Y. Kasahara, K. Harada, T. Majima, K. Monde, S. Nishimura, A. Minami, J. Biomed. Mater. Res. A 81A, 586 (2007)

    CAS  Google Scholar 

  66. C.G. Spiteri, R.M. Pilliar, R.A. Kandel, J. Biomed. Mater. Res. A 78A, 676 (2006)

    CAS  Google Scholar 

  67. R.A. Perez, G. Mestres, Mater. Sci. Eng. C 61, 922–939 (2016)

    CAS  Google Scholar 

  68. G.-I. Im, J.-Y. Ko, J.H. Lee, Cell Transplant. 21, 2397–2405 (2012)

    PubMed  Google Scholar 

  69. F.P.W. Melchels, A.M.C. Barradas, C.A. van Blitterswijk, J. de Boer, J. Feijen, D.W. Grijpma, Acta Biomater. 6, 4208–4217 (2010)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Sinem Yılmaz (Materials Research Centre at İzmir Institute of Technology) for her help in SEM analysis. The financial support for this research was provided by the Scientific and Technical Research Council of Turkey (TUBITAK), Grant No: 114M519.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aylin M. Deliormanlı.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deliormanlı, A.M., Atmaca, H. Effect of pore architecture on the mesenchymal stem cell responses to graphene/polycaprolactone scaffolds prepared by solvent casting and robocasting. J Porous Mater 27, 49–61 (2020). https://doi.org/10.1007/s10934-019-00791-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-019-00791-1

Keywords

Navigation