Skip to main content

Advertisement

Log in

Hybrid porous hypercrosslinking polyanilines: facile Friedel–Crafts preparation, CO2 capture and Cr(VI) removal properties

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this work, a series of hybrid porous hypercrosslinked polyanilines were successfully synthesized by polyaniline and octavinylsilsesquioxane (OVS) via the Friedel–Crafts alkylation reaction. Compared with N-alkylation reaction, the new synthetic approach circumvents some intractable problems, such as high reaction temperatures and pressures, tedious procedures and limited reactants. The resulting hybrid porous polyanilines had apparent surface areas in the range of 22 ± 5 to 461 ± 20 m2 g− 1, and total pore volumes in the range of 0.08–0.30 cm3 g− 1. The porosity of these polymers can be fine-tuned by varying the mass ratio of OVS to polyaniline. Gas sorption applications reveal that the CO2 adsorption capacity of HPANI-5 was 0.59 mmol g− 1 (2.60 wt%) at 298 K and 1.01 bar. Cr(VI) removal experiments reveal that HPANI-1 possessed the maximum Cr(VI) removal capacity at 308 K and pH 1 with an equilibrium adsorption capacity of 1230 ± 80 mg g− 1. The results suggested that the resulted hypercrosslinking polyanilines had potential to be used as adsorbents for CO2 uptake and Cr(VI) removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V. Torres-Costa, R.J. Martín-Palma, Application of nanostructured porous silicon in the field of optics. A review. J. Mater. Sci. 45, 2823–2838 (2010)

    Article  CAS  Google Scholar 

  2. J.S.M. Lee, M.E. Briggs, T. Hasell, A.I. Cooper, Hyperporous carbons from hypercrosslinked polymer. Adv. Mater. 28, 9804–9810 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. D.C. Wu, F. Xu, B. Sun, R.W. Fu, H.K. He, K. Matyjaszewski, Design and preparation of porous polymers. Chem. Rev. 112, 3959–4015 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. E.M. Gallego, M.T. Portilla, C. Paris, A. León-Escamilla, M. Boronat, M. Moliner, A. Corma, Ab initio” synthesis of zeolites for preestablished catalytic reactions. Science 355, 1051–1054 (2017)

    Article  CAS  PubMed  Google Scholar 

  5. T.A. Saleh, M. Naeemullah, A. Tuzen, Sari, Polyethylenimine modified activatedcarbon as novel magnetic adsorbent for the removal of uranium from aqueous solution. Chem. Eng. Res. Des. 117, 218–227 (2017)

    Article  CAS  Google Scholar 

  6. A.V. assilakopoulou, V. Georgakilas, N. Vainos, I. Koutselas, Successful entrapment of carbon dots within flexible free-standing transparent mesoporous organic-inorganic silica hybrid films for photonic applications. J. Phys. Chem. Solids 103, 190–196 (2017)

    Article  CAS  Google Scholar 

  7. T.R. Zhan, S.S. Lu, H.Q. Rong, W.G. Hou, H.N. Teng, Y.H. Wen, Metal-organic-framework-derived Co/nitrogen-dopedporous carbon composite as an effective oxygen reduction electrocatalyst. J. Mater. Sci. 53, 6774–6784 (2018)

    Article  CAS  Google Scholar 

  8. Y. Wu, L.G. Li, W.Y. Yang, S.Y. Feng, H.Z. Liu, Hybrid nanoporous polystyrene derived from cubic octavinylsilsesquioxane and commercial polystyrene via the Friedel-Crafts reaction. RSC. Adv. 5, 12987–12993 (2015)

    Article  CAS  Google Scholar 

  9. G.Y. Li, Z.G. Wang, Microporous polyimides with uniform pores for adsorption and separation of CO2 gas and organic vapors. Macromolecules. 46, 3058–3066 (2013)

    Article  CAS  Google Scholar 

  10. Z.H. Tian, J.J. Huang, Z.L. Zhang, G.L. Shao, A. Liu, S.G. Yuan, Organic-inorganic hybrid microporous polymers based on Octaphenylcyclotetrasiloxane: synthesis, carbonization and adsorption for CO2, Micropor. Mesopor. Mat. 234, 130–136 (2016)

    Article  CAS  Google Scholar 

  11. W. Kuang, Y.N. Liu, J.H. Huang, Phenol-modified hyper-cross-linked resins with almost all micro/mesopores and their adsorption to aniline. J. Colloid. Interface Sci. 487, 31–37 (2017)

    Article  CAS  PubMed  Google Scholar 

  12. N.N.S. Subri, P.A.G. Cormack, S.N.A.M. Jamil, L.C. Abdullah, R. Daik, Synthesis of poly(acrylonitrile-co-divinyl benzene-co-vinylbenzyl chloride)-derived hypercrosslinked polymer microspheres and apreliminary evaluation of their potential for the solid-phase capture of pharmaceuticals. J. Appl. Polym. Sci. 135, 45677 (2018)

    Article  CAS  Google Scholar 

  13. H. Woehlk, J. Steinkoenig, C. Lang, A.S. Goldmann, L. Barner, J.P. Blinco, K.E. Fairfull-Smith, C. Barner-Kowollik, Oxidative polymerization of catecholamines: structural access by high-resolution mass spectrometry. Polym. Chem. 8, 3050–3055 (2017)

    Article  CAS  Google Scholar 

  14. H.P. Fan, Z.L. Qi, D.J. Sui, F. Mao, R.Z. Chen, J. Huang, Palladium nanoparticles in cross-linked polyaniline as highly efficient catalysts for Suzuki-Miyaura reactions. Chin. J. Catal. 38, 589–596 (2017)

    Article  CAS  Google Scholar 

  15. S. Asada, A. Nito, Y. Miyagi, J. Ishida, Y. Obora, F. Sanda, Sonogashira-Hagihara and Mizoroki-Heck couplingpolymerizations catalyzed by Pd nanoclusters. Macromolecules. 50, 4083–4087 (2017)

    Article  CAS  Google Scholar 

  16. W.J. Gong, J. Ma, Z.Y. Zhao, F. Gao, F. Liang, H.J. Zhang, S.M. Liu, Inhibition and Stabilization: Cucurbituril induced distinct effects on the Schiff-Base reaction. J. Org. Chem. 82, 3298–3301 (2017)

    Article  CAS  PubMed  Google Scholar 

  17. M. Janni, A. Thirupathi, S. Arora, S. Peruncheralathan, Chemoselective Ullmann coupling at room temperature: a facile access to 2-aminobenzo[b]thiophenes. Chem. Commun. 53, 8439–8442 (2017)

    Article  CAS  Google Scholar 

  18. K.S.J. Kumara, G. Krishnamurthy, B.E.K. Swamy, N.S. Kumar, M. Kumar, Catalytic performance study of nano-cobalt: a catalyst for complement to the Heck coupling reaction. J. Porous. Mat. 24, 1095–1103 (2017)

    Article  CAS  Google Scholar 

  19. H.N. Liu, Q. Li, Q.Q. Li, W. Jin, X.M. Li, A. Hameed, S.L. Qiao, Rational skeletal rigidity of conjugated microporous polythiophenes for gas uptake. Polym. Chem. 8, 6733–6740 (2017)

    Article  CAS  Google Scholar 

  20. S. Peshoria, A.K. Narula, Structural, morphological and electrochemical properties of a polypyrrole nanohybrid produced by template-assisted fabrication. J. Mater. Sci. 53, 3876–3888 (2018)

    Article  CAS  Google Scholar 

  21. L.J. Feng, Q. Chen, J.H. Zhu, D.P. Liu, Y.C. Zhao, B.H. Han, Adsorption performance and catalytic activity of porous conjugated polyporphyrinsviacarbazole-based oxidative coupling polymerization. Polym. Chem. 5, 3081–3088 (2014)

    Article  CAS  Google Scholar 

  22. H.Y. Yan, K.C. Kou, Enhanced thermoelectric properties in polyaniline composites with polyaniline-coated carbon nanotubes. J. Mater. Sci. 49, 1222–1228 (2014)

    Article  CAS  Google Scholar 

  23. V. Mazeiko, A.K. Minkstimiene, A. Ramanaviciene, Z. Balevicius, A. Ramanavicius, Gold nanoparticle and conducting polymer-polyaniline-based nanocomposites for glucose biosensor design. Sens. Actuators. B 189, 187–193 (2013)

    Article  CAS  Google Scholar 

  24. S.H. Qiu, C. Chen, W.R. Zheng, W. Li, H.C. Zhao, L.P. Wang, Long-term corrosion protection of mild steel by epoxy coating containing self-doped polyaniline nanofiber. Synth. Met. 229, 39–46 (2017)

    Article  CAS  Google Scholar 

  25. M. Mohsennia, M.M. Bidgoli, F.A. Boroumand, A.M. Nia, Electrically conductive polyaniline as hole-injection layer for MEH-PPV: BT based polymer light emitting diodes. J. Mater. Sci. Eng. B. 197, 25–30 (2015)

    Article  CAS  Google Scholar 

  26. M.A. Moussa, M.H.A. Rehim, S.A. Khairy, M.A. Soliman, A.M. Ghoneim, G.M. Turky, Electrical investigations of polyaniline/sulfonated polystyrene composites using broadband dielectric spectroscopy. Synth. Met. 209, 34–40 (2015)

    Article  CAS  Google Scholar 

  27. P.R. Deshmukh, S.V. Patil, R.N. Bulakhe, S.D. Sartale, C.D. Lokhande, Inexpensive synthesis route of porous polyaniline-ruthenium oxide composite for supercapacitor application. Chem. Eng. J. 257, 82–89 (2014)

    Article  CAS  Google Scholar 

  28. X.X. He, J.T. Li, X.S. Jia, L. Tong, X.X. Wang, J. Zhang, J. Zheng, X. Ning, Y.Z. Long, Facile fabrication of multi-hierarchical porous polyaniline composite as pressure sensor and gas sensor with adjustable sensitivity. Nanoscale. Res. Lett. 12, 476–483 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. P. Sekar, B. Anothumakkool, S. Kurungot, 3D Polyaniline porous layer anchored pillared graphene sheets:enhanced interface joined with high conductivity for better chargestorage applications, ACS. Appl. Mater. Inter. 7, 7661–7669 (2015)

    Article  CAS  Google Scholar 

  30. H. Kwon, D. Hong, I. Ryu, S. Yim, Supercapacitive properties of 3D-arrayed polyaniline hollownanospheres encaging RuO2 nanoparticles. ACS. Appl. Mater. Interfaces. 9, 7412–7423 (2017)

    Article  CAS  PubMed  Google Scholar 

  31. M.M. Sk, C.Y. Yue, R.K. Jena, Facile growth of heparin-controlled porous polyaniline nanofiber networks and their application in supercapacitors. RSC. Adv. 4, 5188–5197 (2014)

    Article  CAS  Google Scholar 

  32. M.B. Gholivand, M.M. Abolghasemi, P. Fattahpour, Highly porous silica-polyaniline nanocomposite as a novel solid-phase microextraction fiber coating. J. Sep. Sci. 35, 101–106 (2012)

    Article  CAS  PubMed  Google Scholar 

  33. X. Wang, D. Liu, J.X. Deng, X.J. Duan, J.S. Guo, P. Liu, Improving cyclic stability of polyaniline by thermal crosslinking as electrode material for supercapacitors, RSC. Adv. 5, 78545–78552 (2015)

    CAS  Google Scholar 

  34. A.C. Anbalagan, S.N. Sawant, Brine solution-driven synthesis of porous polyaniline for supercapacitor electrode application. Polymer. 87, 129–137 (2016)

    Article  CAS  Google Scholar 

  35. J. Germain, J.M.J. Frechet, F. Svec, Hypercrosslinked polyanilines with nanoporous structure and high surface area: potential adsorbents for hydrogen storage. J. Mater. Chem. 47, 4989–4997 (2007)

    Article  CAS  Google Scholar 

  36. V. Sharma, A. Sahoo, Y. Sharma, P. Mohanty, Synthesis of nanoporous hypercrosslinked polyaniline (HCPANI) for gas sorption and electrochemical supercapacitor applications, RSC. Adv. 5, 45749–45754 (2015)

    Article  CAS  Google Scholar 

  37. V. Sharma, S. Khilari, D. Pradhan, P. Mohanty, Solvothermally synthesized nanoporous hypercrosslinked polyaniline: studies of the gas sorption and charge storage behavior. RSC. Adv. 6, 56421–56428 (2016)

    Article  CAS  Google Scholar 

  38. S.L. Wang, L.X. Tan, C.X. Zhang, I. Hussain, B.E. Tan, Novel POSS-based organic-inorganic hybrid porous materials by low cost strategies. J. Mater. Chem. A. 12, 6542–6548 (2015)

    Article  CAS  Google Scholar 

  39. F.K. Wang, X.H. Lu, C.B. He, Some recent developments of polyhedral oligomeric silsesquioxane(POSS)-based polymeric materials. J. Mater. Chem. 21, 2775–2782 (2011)

    Article  CAS  Google Scholar 

  40. Y. Wu, D.X. Wang, L.G. Li, W.Y. Yang, S.Y. Feng, H.Z. Liu, Hybrid porous polymers constructed from octavinylsilsesquioxane and benzene via Friedel–Crafts reaction: tunable porosity, gas sorption, and post functionalization. J. Mater. Chem. A. 2, 2160–2167 (2014)

    Article  CAS  Google Scholar 

  41. D.Z. Chen, S.P. Yi, W.B. Wu, Y.L. Zhong, J. Liao, C. Huang, W.J. Shi, Synthesis and characterization of novel room temperature vulcanized (RTV) silicone rubbers using Vinyl-POSS derivatives as cross linking agents. Polymer. 51, 3867–3878 (2010)

    Article  CAS  Google Scholar 

  42. Y. Sun, A.G. MacDiarmid, A.J. Epstein, Polyaniline: synthesis and characterization of pernigraniline base. Chem. Commun. 7, 529–531 (1990)

    Article  Google Scholar 

  43. X. Wang, J.X. Deng, X.J. Duan, D. Liu, J.S. Guo, P. Liu, Crosslinked polyaniline nanorods with improved electrochemical performance as electrode material for supercapacitors. J. Mater. Chem. A. 2, 12323–12329 (2014)

    Article  CAS  Google Scholar 

  44. F.J. Guo, Q.Q. Liu, H.Y. Mi, Flexible and cross-linked polyaniline nets as promising supercapacitor electrodes. Mater. Lett. 163, 115–117 (2016)

    Article  CAS  Google Scholar 

  45. W. Chaikittisilp, M. Kubo, T. Moteki, A.S. Narutaki, A. Shimojima, T. Okubo, Porous siloxane organic hybrid with ultrahigh surface area through simultaneous polymerization-destruction of functionalized cubicsiloxane cages. J. Am. Chem. Soc. 133, 13832–13835 (2011)

    Article  CAS  PubMed  Google Scholar 

  46. W.Y. Yang, D.X. Wang, L.G. Li, H.Z. Liu, Construction of hybrid porous materials from cubic octavinylsilsesquioxane through Friedel–Crafts reaction using tetraphenylsilane as a concentrative crosslinker. Eur. J. Inorg. Chem. 2014, 2976–2982 (2014)

    Article  CAS  Google Scholar 

  47. H.H. Liu, H.Z. Liu, Selective dye adsorption and metal ion detection using multifunctional silsesquioxane-based tetraphenylethene-linked nanoporous polymers. J. Mater. Chem. A. 5, 9156–9162 (2017)

    Article  CAS  Google Scholar 

  48. N.B. Mckeown, P.M. Budd, Exploitation of intrinsic microporosity in polymer-based materials. Macromolecules. 43, 5163–5176 (2010)

    Article  CAS  Google Scholar 

  49. D.X. Wang, W.Y. Yang, L.G. Li, X. Zhao, S.Y. Feng, H.Z. Liu, Hybrid networks constructed from tetrahedral silicon-centered precursors and cubic POSS-based building blocks via Heck reaction: porosity, gassorption, and luminescence. J. Mater. Chem. A. 1, 13549–13558 (2013)

    Article  CAS  Google Scholar 

  50. Z.J. Gu, J.T. Wang, L.L. Li, L.F. Chen, Q. Shen, Formation of polyaniline nanotubes with different pore shapes using α-, β- and γ-cyclodextrins as templates. Mater. Lett. 117, 66–68 (2014)

    Article  CAS  Google Scholar 

  51. R. Shen, Y. Liu, W. Yang, Y. Hou, X. Zhao, H. Liu, Triphenylamine-functionalized Silsesquioxane-based hybrid porous polymers: tunable porosity and luminescence for multianalyte detection. Chem. Eur. J. 23, 13465–13473 (2017)

    Article  CAS  PubMed  Google Scholar 

  52. H. Wang, X. Yuan, Y. Wu, X. Chen, L. Leng, H. Wang, H. Li, G. Zeng, Facile synthesis of polypyrrole decorated reduced graphene oxide-Fe3O4 magnetic composites and its application for the Cr(VI) removal. Chem. Eng. J. 262, 595–606 (2015)

    Google Scholar 

  53. Q. Hu, C. Guo, D. Sun, Y. Ma, B. Qiu, Z. Guo, Extracellular polymeric substances induced porous polyaniline for enhanced Cr(VI) removal from wastewater. ACS Sustain. Chem. Eng. 5, 11788–11796 (2017)

    Article  CAS  Google Scholar 

  54. U.O. Aigbe, R. Das, W.H. Ho, V. Srinivasu, A. Maity, A novel method for removal of Cr(VI) using polypyrrole magnetic nanocomposite in the presence of unsteady magnetic fields. Sep. Purif. Technol. 194, 377–387 (2018)

    Article  CAS  Google Scholar 

  55. Z. Zhang, T. Gao, S. Si, Q. Liu, Y. Wu, G. Zhou, One-pot preparation of P(TA-TEPA)-PAM-RGO ternary composite for high efficient Cr(VI) removal from aqueous solution. Chem. Eng. J. 343, 207–216 (2018)

    Article  CAS  Google Scholar 

  56. T. Wen, Q. Fan, X. Tan, Y. Chen, C. Chen, A. Xu, X. Wang, A core-shell structure of polyaniline coated protonic titanate nanobelt composites for both Cr(VI) and humic acid removal. Polym. Chem. 7, 785–794 (2016)

    Article  CAS  Google Scholar 

  57. G. Yang, L. Tang, Y. Cai, G. Zeng, P. Guo, G. Chen, Y. Zhou, J. Tang, J. Chen, W. Xiong, Effective removal of Cr(VI) through adsorption and reduction by magnetic mesoporous carbon incorporated with polyaniline. RSC Adv. 4 (2014) 58362 – 58371

  58. J. Li, T. Peng, Y. Zhang, C. Zhou, A. Zhu, Polyaniline modified SnO2 nanoparticles for efficient photocatalytic reduction of aqueous Cr(VI) under visible light. Sep. Purif. Technol. 201, 120–129 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Joint Funds of Shandong Provincial Natural Science Foundation and Colleges and Universities of Shandong Province (ZR2017LEM013), National Natural Science Foundation of China (Grant Nos. 51372124, 51572134, 51503108), Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province and Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Wu or Guowei Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 404 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Wu, Y., Xu, A. et al. Hybrid porous hypercrosslinking polyanilines: facile Friedel–Crafts preparation, CO2 capture and Cr(VI) removal properties. J Porous Mater 26, 1495–1505 (2019). https://doi.org/10.1007/s10934-019-00747-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-019-00747-5

Keywords

Navigation