Skip to main content

Advertisement

Log in

Poly(lactic acid) based hydrogels: formation, characteristics and biomedical applications

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Hydrogels are cross-linked polymeric networks that absorb or release water in response to some stimuli and are susceptible to cellular attachment and can be remodeled into complex structures. The properties of hydrogels can be tuned by gentle use of copolymers and cross-linkers. These hydrogels are designed in such a way that they are degraded and subsequently removed from the work area. The hydrogels have ability to carry small amounts of drugs, proteins and other desirable components for medical and other purposes. Poly(lactic acid) (PLA) and its stereoisomers are nonfunctional-hydrophobic polymers that are applicable in biomedical sector. Nevertheless, a high glass transition temperature of PLA limits its application in biomedical field. They, therefore are conjugated or copolymerized with hydrophilic polymers like polyethylene glycol (PEG) and chitosan to form composite hydrogels. The PEG is used to polymerize PLA to form thermo-sensitive hydrogels. Similarly, polyurethanes, polysaccharides, oligomers and peptides are employed for hydrogels formation through physical and chemical routes. The existence of functional moieties in polysaccharides like carboxyl, amine and hydroxyl offers easy cross-linking and conjugation. In addition to this, the use of polysaccharides as hydrophilic part of hydrogels engages the aqueous media which exhibits high swelling capacity of polysaccharides. The PLA based thermo-responsive hydrogels have effectively been used for wound healing, tissue engineering as well as drug control and release. This review gives a thorough focus on recent developments in PLA based hydrogels formation, their properties and possible biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.S. Hoffman, Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 18–23 (2012)

    Article  Google Scholar 

  2. J. Cabral, S.C. Moratti, Hydrogels for biomedical applications. Future Med. Chem. 3, 1877–1888 (2011)

    Article  CAS  PubMed  Google Scholar 

  3. N. Bhattarai, J. Gunn, M. Zhang, Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev. 62, 83–99 (2010)

    Article  CAS  PubMed  Google Scholar 

  4. F. Ganji, M.J. Abdekhodaie, Chitosan–g-PLGA copolymer as a thermosensitive membrane. Carbohyd. Polym. 80, 740–746 (2010)

    Article  CAS  Google Scholar 

  5. D. Garlotta, A literature review of poly(lacticctic acid). J. Polym. Environ. 9, 63–84 (2001)

    Article  CAS  Google Scholar 

  6. E.-R. Kenawy, G.L. Bowlin, K. Mansfield, J. Layman, D.G. Simpson, E.H. Sanders et al., Release of tetracycline hydrochloride from electrospun poly (ethylene-co-vinylacetate), poly(lacticctic acid), and a blend. J. Controlled Release 81, 57–64 (2002)

    Article  CAS  Google Scholar 

  7. R. Datta, S.-P. Tsai, P. Bonsignore, S.-H. Moon, J.R. Frank, Technological and economic potential of poly(lacticctic acid) and lactic acid derivatives. FEMS Microbiol. Rev. 16, 221–231 (1995)

    Article  CAS  Google Scholar 

  8. K.A. Athanasiou, G.G. Niederauer, C.M. Agrawal, Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17, 93–102 (1996)

    Article  CAS  PubMed  Google Scholar 

  9. N. Graupner, A.S. Herrmann, J. Müssig, Natural and man-made cellulose fibre-reinforced poly(lacticctic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Compos. Part A: Appl. Sci. Manuf. 40, 810–821 (2009)

    Article  CAS  Google Scholar 

  10. Y.L. Wu, X. Chen, W. Wang, X.J. Loh, Engineering bioresponsive hydrogels toward healthcare applications. Macromol. Chem. Phys. 217, 175–188 (2016)

    Article  CAS  Google Scholar 

  11. M. Hamidi, A. Azadi, P. Rafiei, Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 60, 1638–1649 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. M. Murariu, P. Dubois, PLA composites: from production to properties. Adv. Drug Deliv. Rev. 107, 17–46 (2016)

    Article  CAS  PubMed  Google Scholar 

  13. Y. Zhan, C.-C. Chu, Biodegradation of hydrophilic–hydrophobic hydrogels and its effect on albumin release. J. Mater. Sci: Mater. Med. 13, 667–676 (2002)

    CAS  Google Scholar 

  14. M. Rinaudo, Main properties and current applications of some polysaccharides as biomaterials. Polym. Int. 57, 397–430 (2008)

    Article  CAS  Google Scholar 

  15. J. Sun, H. Tan, Alginate-based biomaterials for regenerative medicine applications. Materials 6, 1285–1309 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. A. Sannino, C. Demitri, M. Madaghiele, Biodegradable cellulose-based hydrogels: design and applications. Materials 2, 353–373 (2009)

    Article  CAS  PubMed Central  Google Scholar 

  17. R. Jin, L.M. Teixeira, P.J. Dijkstra, M. Karperien, C. Van Blitterswijk, Z. Zhong et al., Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30, 2544–2551 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. V.B. Bueno, R. Bentini, L.H. Catalani, D.F.S. Petri, Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydr. Polym. 92, 1091–1099 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. R. Mishra, M. Datt, K. Pal, A. Banthia, Preparation and characterization of amidated pectin based hydrogels for drug delivery system. J. Mater. Sci.: Mater. Med. 19, 2275–2280 (2008)

    CAS  Google Scholar 

  20. H. Tan, C.R. Chu, K.A. Payne, K.G. Marra, Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30, 2499–2506 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. W. van Dijk-Wolthuis, J. Hoogeboom, M. Van Steenbergen, S. Tsang, W. Hennink, Degradation and release behavior of dextran-based hydrogels. Macromolecules 30, 4639–4645 (1997)

    Article  Google Scholar 

  22. A.L. Rutz, R.N. Shah, in Polymeric Hydrogels as Smart Biomaterials, ed. by S. Kaila. Protein-based hydrogels, (Springer, New York, 2016) pp. 73–104

    Chapter  Google Scholar 

  23. A.M. Jonker, D.W. Löwik, J.C. van Hest, Peptide-and protein-based hydrogels. Chem. Mater. 24, 759–773 (2012)

    Article  CAS  Google Scholar 

  24. Y. Tabata, Biomaterial technology for tissue engineering applications, J. R. Soc. Interface. 6, S311–S324 (2009)

    Article  CAS  Google Scholar 

  25. W. Hennink, C.F. Van Nostrum, Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 64, 223–236 (2012)

    Article  Google Scholar 

  26. S.K. Gulrez, S. Al-Assaf, G.O. Phillips, in Progress in Molecular and Environmental Bioengineering-from Analysis and Modeling to Technology Applications, ed. by A. Carpi. Hydrogels: methods of preparation, characterisation and applications (InTech, London, 2011)

    Google Scholar 

  27. E.M. Ahmed, Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 6, 105–121 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. G. Grassi, R. Farra, P. Caliceti, G. Guarnieri, S. Salmaso, M. Carenza et al., Temperature-sensitive hydrogels. Am. J. Drug Deliv. 3, 239–251 (2005)

    Article  CAS  Google Scholar 

  29. Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 53, 321–339 (2001)

    Article  CAS  PubMed  Google Scholar 

  30. L. Dong, A.S. Hoffman, A novel approach for preparation of pH-sensitive hydrogels for enteric drug delivery. J. Controlled Release 15, 141–152 (1991)

    Article  CAS  Google Scholar 

  31. M. Torres-Lugo, N.A. Peppas, Molecular design and in vitro studies of novel pH-sensitive hydrogels for the oral delivery of calcitonin. Macromolecules 32, 6646–6651, (1999)

    Article  CAS  Google Scholar 

  32. F. Ahmadi, Z. Oveisi, S.M. Samani, Z. Amoozgar, Chitosan based hydrogels: characteristics and pharmaceutical applications. Res. Pharm. Sci. 10, 1–16 (2014)

    Google Scholar 

  33. M. McKenzie, D. Betts, A. Suh, K. Bui, L.D. Kim, H. Cho, Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules 20, 20397–20408 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. J. Li, L. Peng, J. Sun, H. Guo, K. Guo, Z. Li et al., Slow-release drug deliver system with polylactic acid hydrogels in prevention of tracheal wall fibroplasia. Arch. Clin. Exp. Surg. 1, 1–7 (2012)

    Article  Google Scholar 

  35. Z. Farooqi, S. Khan, R. Begum, Temperature-responsive hybrid microgels for catalytic applications: a review. Mater. Sci. Technol. 33, 129–137 (2017)

    Article  CAS  Google Scholar 

  36. F. Naseer, M. Ajmal, F. Bibi, Z.H. Farooqi, M. Siddiq, Copper and cobalt nanoparticles containing poly (acrylic acid-co-acrylamide) hydrogel composites for rapid reduction of 4-nitrophenol and fast removal of malachite green from aqueous medium, Polym. Compos. (2017). https://doi.org/10.1002/pc.24329

    Article  Google Scholar 

  37. Z.H. Farooqi, S.R. Khan, R. Begum, A. Ijaz, Review on synthesis, properties, characterization, and applications of responsive microgels fabricated with gold nanostructures. Rev. Chem. Eng. 32, 49–69 (2016)

    Article  CAS  Google Scholar 

  38. D. Go, D. Rommel, L. Chen, F. Shi, J. Sprakel, A.J. Kuehne, Programmable phase transitions in a photonic microgel system: linking soft interactions to a temporal pH gradient, Langmuir 33, 2011–2016, (2017)

    Article  CAS  PubMed  Google Scholar 

  39. Q. Wu, X. Du, A. Chang, X. Jiang, X. Yan, X. Cao et al., Bioinspired synthesis of poly (phenylboronic acid) microgels with high glucose selectivity at physiological pH. Polym. Chem. 7, 6500–6512 (2016)

    Article  CAS  Google Scholar 

  40. Y. Kaneko, S. Nakamura, K. Sakai, T. Aoyagi, A. Kikuchi, Y. Sakurai et al., Rapid deswelling response of poly (N-isopropylacrylamide) hydrogels by the formation of water release channels using poly (ethylene oxide) graft chains. Macromolecules 31, 6099–6105 (1998)

    Article  CAS  Google Scholar 

  41. J. Berger, M. Reist, J.M. Mayer, O. Felt, R. Gurny, Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur. J. Pharm. Biopharm. 57, 35–52 (2004)

    Article  CAS  PubMed  Google Scholar 

  42. K. Matyjaszewski, K.L. Beers, A. Kern, S.G. Gaynor, Hydrogels by atom transfer radical polymerization. I. Poly (N-vinylpyrrolidinone-g-styrene) via the macromonomer method. J. Polym. Sci., Part A: Polym. Chem. 36, 823–830 (1998)

    Article  CAS  Google Scholar 

  43. K.T. Nguyen, J.L. West, Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23, 4307–4314 (2002)

    Article  CAS  PubMed  Google Scholar 

  44. M. Ehrbar, S.C. Rizzi, R.G. Schoenmakers, B. San Miguel, J.A. Hubbell, F.E. Weber et al., Biomolecular hydrogels formed and degraded via site-specific enzymatic reactions. Biomacromol 8, 3000–3007 (2007)

    Article  CAS  Google Scholar 

  45. A. Altunbas, D.J. Pochan, in Peptide-Based Materials, ed. by T. Deming. Peptide-based and polypeptide-based hydrogels for drug delivery and tissue engineering. (Springer, Berlin, 2011), pp. 135–167

    Chapter  Google Scholar 

  46. C.Yan and D.J. Pochan, Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem. Soc. Rev. 39, 3528–3540 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. J.R. Tse, A.J. Engler, Preparation of hydrogel substrates with tunable mechanical properties, Curr. Protoc. Cell Biol. 47(1), 10–16, (2010). https://doi.org/10.1002/0471143030.cb1016s47

    Article  Google Scholar 

  48. N. Sood, A. Bhardwaj, S. Mehta, A. Mehta, Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv. 23, 748–770, (2016)

    Article  CAS  Google Scholar 

  49. M.S. Holm, S. Saravanamurugan, E. Taarning, Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science 328, 602–605 (2010)

    Article  CAS  PubMed  Google Scholar 

  50. D.D. Mladenović, A.P. Djukić-Vuković, S.D. Kocić-Tanackov, J.D. Pejin, L.V. Mojović, Lactic acid production on a combined distillery stillage and sugar beet molasses substrate, J. Chem. Technol. Biotechnol. 91(9), 2474–2479 (2015)

    Google Scholar 

  51. N. Narayanan, P.K. Roychoudhury, A. Srivastava, L (+) lactic acid fermentation and its product polymerization. Electron. J. Biotechnol. 7, 167–178 (2004)

    Google Scholar 

  52. Y. Wang, W. Deng, B. Wang, Q. Zhang, X. Wan, Z. Tang et al., Chemical synthesis of lactic acid from cellulose catalysed by lead (II) ions in water. Nat. Commun. 4, 2141 (2013)

    Article  CAS  PubMed  Google Scholar 

  53. M. Jamshidian, E.A. Tehrany, M. Imran, M. Jacquot, S. Desobry, Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr. Rev. Food Sci. Food Saf. 9, 552–571 (2010)

    Article  CAS  Google Scholar 

  54. G. Kale, R. Auras, S.P. Singh, R. Narayan, Biodegradability of polylactide bottles in real and simulated composting conditions. Polym. Testing 26, 1049–1061 (2007)

    Article  CAS  Google Scholar 

  55. T. Ohkita, S.H. Lee, Thermal degradation and biodegradability of poly(lacticctic acid)/corn starch biocomposites. J. Appl. Polym. Sci. 100, 3009–3017 (2006)

    Article  CAS  Google Scholar 

  56. A.V. Janorkar, A.T. Metters, D.E. Hirt, Modification of poly(lacticctic acid) films: enhanced wettability from surface-confined photografting and increased degradation rate due to an artifact of the photografting process. Macromolecules 37, 9151–9159 (2004)

    Article  CAS  Google Scholar 

  57. A. Basu, K.R. Kunduru, S. Doppalapudi, A.J. Domb, W. Khan, Poly(lacticctic acid) based hydrogels. Adv. Drug Deliv. Rev. 107, 192–205 (2016)

    Article  CAS  PubMed  Google Scholar 

  58. R. Al-Itry, K. Lamnawar, A. Maazouz, Biopolymer blends based on poly(lacticctic acid): shear and elongation rheology/structure/blowing process relationships, Polymers 7, 939–962 (2015)

    Article  CAS  Google Scholar 

  59. H. Li, Y. Li, W. Yang, L. Cheng, J. Tan, Needleless melt-electrospinning of biodegradable poly(lacticctic acid) ultrafine fibers for the removal of oil from water, Polymers 9, 3, (2017)

    Article  CAS  PubMed Central  Google Scholar 

  60. J. Zeng, H. Haoqing, A. Schaper, J.H. Wendorff, A. Greiner, Poly-l-lactide nanofibers by electrospinning–influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. e-Polymers 3, 102–110, (2003)

    Article  Google Scholar 

  61. Y. Cheng, S. Deng, P. Chen, R. Ruan, Polylactic acid (PLA) synthesis and modifications: a review. Front. Chem. China 4, 259–264 (2009)

    Article  Google Scholar 

  62. A.J. Lasprilla, G.A. Martinez, B.H. Lunelli, A.L. Jardini, R.M. Filho, Poly-lactic acid synthesis for application in biomedical devices—a review, Biotechnol. Adv. 30, 321–328, (2012)

    Article  CAS  PubMed  Google Scholar 

  63. R. Mehta, V. Kumar, H. Bhunia, S. Upadhyay, Synthesis of poly(lacticctic acid): a review. J. Macromol. Sci. Part C: Polym. Rev. 45, 325–349 (2005)

    Article  CAS  Google Scholar 

  64. L. Xiao, B. Wang, G. Yang, M. Gauthier, in Biomedical Science, Engineering and Technology, ed. by D.N. Ghista. Poly(lacticctic acid)-based biomaterials: synthesis, modification and applications. (InTech, London, 2012), pp. 247–282

    Google Scholar 

  65. A. Södergård, M. Stolt, Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci. 27, 1123–1163 (2002)

    Article  Google Scholar 

  66. M.S. Lopes, A. Jardini, R. Maciel, Filho, Poly(lacticctic acid) production for tissue engineering applications. Proc. Eng. 42, 1402–1413 (2012)

    Article  CAS  Google Scholar 

  67. J.K. Oh, Polylactide (PLA)-based amphiphilic block copolymers: synthesis, self-assembly, and biomedical applications. Soft Matter 7, 5096–5108 (2011)

    Article  CAS  Google Scholar 

  68. R.M. Rasal, A.V. Janorkar, D.E. Hirt, Poly(lacticctic acid) modifications. Prog. Polym. Sci. 35, 338–356 (2010)

    Article  CAS  Google Scholar 

  69. I.M. El-Sherbiny, M.H. Yacoub, Hydrogel scaffolds for tissue engineering: progress and challenges, Glob. Cardiol. Sci. Pract. (2013). https://doi.org/10.5339/gcsp.2013.38

    Article  PubMed  PubMed Central  Google Scholar 

  70. D. Das, R. Das, J. Mandal, A. Ghosh, S. Pal, Dextrin crosslinked with poly(lacticctic acid): a novel hydrogel for controlled drug release application, J. Appl. Polym. Sci. (2014). https://doi.org/10.1002/app.40039

    Article  Google Scholar 

  71. A. Metters, K. Anseth, C. Bowman, Fundamental studies of a novel, biodegradable PEG-b-PLA hydrogel. Polymer 41, 3993–4004 (2000)

    Article  CAS  Google Scholar 

  72. I.A. Nam, Y.J. Oh, A. Abdullah-Al-Nahain, E. Yoo, S.Y. Park, Preparation of cross-linked biodegradable copolymers based polycarbanion of 3-arm PL (D) LA with brominated pluronic and stereocomplex mediated gelation behavior, in Biomedical and Health Informatics (BHI), 2012 IEEE-EMBS International Conference on, 2012, pp. 620–623

  73. A. Harrane, A. Leroy, H. Nouailhas, X. Garric, J. Coudane, B. Nottelet, PLA-based biodegradable and tunable soft elastomers for biomedical applications. Biomed. Mater. 6, 065006 (2011)

    Article  CAS  PubMed  Google Scholar 

  74. E.M. Saffer, G.N. Tew, S.R. Bhatia, Poly(lacticctic acid)-poly (ethylene oxide) block copolymers: new directions in self-assembly and biomedical applications, Curr. Med. Chem. 18, 5676–5686, (2011)

    Article  CAS  PubMed  Google Scholar 

  75. T. Maharana, S. Pattanaik, A. Routaray, N. Nath, A.K. Sutar, Synthesis and characterization of poly(lacticctic acid) based graft copolymers. React. Funct. Polym. 93, 47–67 (2015)

    Article  CAS  Google Scholar 

  76. Y. Hu, Y. Liu, X. Qi, P. Liu, Z. Fan, S. Li, Novel bioresorbable hydrogels prepared from chitosan-graft-polylactide copolymers. Polym. Int. 61, 74–81 (2012)

    Article  CAS  Google Scholar 

  77. H.A. El-Mohdy, E. Hegazy, E. El-Nesr, M. El-Wahab, Synthesis, characterization and properties of radiation-induced Starch/(EG-co-MAA) hydrogels. Arab. J. Chem. 9, S1627–S1635, (2016)

    Article  CAS  Google Scholar 

  78. T.R. Hoare, D.S. Kohane, Hydrogels in drug delivery: progress and challenges. Polymer 49, 1993–2007 (2008)

    Article  CAS  Google Scholar 

  79. I. Chen, T. Ci, L. Yu, J. Ding, Effects of molecular weight and its distribution of PEG block on micellization and thermogellability of PLGA–PEG–PLGA copolymer aqueous solutions. Macromolecules 48, 3662–3671 (2015)

    Article  CAS  Google Scholar 

  80. I.M. El-Sherbiny, M. Abdel-Mogib, A.-A.M. Dawidar, A. Elsayed, H.D. Smyth, Biodegradable pH-responsive alginate-poly(lacticctic-co-glycolic acid) nano/micro hydrogel matrices for oral delivery of silymarin. Carbohydr. Polym. 83, 1345–1354 (2011)

    Article  CAS  Google Scholar 

  81. I.Y. Lee, D.J. Mooney, Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106–126 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Y. Li, L. Zhu, Y. Fan, Y. Li, L. Cheng, W. Liu et al., Formation and controlled drug release using a three-component supramolecular hydrogel for anti-Schistosoma japonicum cercariae, Nanomaterials, 6, 46, 2016

    Article  CAS  PubMed Central  Google Scholar 

  83. S. Zhou, X. Zheng, X. Yu, J. Wang, J. Weng, X. Li et al., Hydrogen bonding interaction of poly (d, l-lactide)/hydroxyapatite nanocomposites. Chem. Mater. 19, 247–253 (2007)

    Article  CAS  Google Scholar 

  84. I. Slager, A.J. Domb, Biopolymer stereocomplexes. Adv. Drug Deliv. Rev. 55, 549–583 (2003)

    Article  CAS  PubMed  Google Scholar 

  85. J. Geschwind, S. Rathi, C. Tonhauser, M. Schömer, S.L. Hsu, E.B. Coughlin et al., Stereocomplex formation in polylactide multiarm stars and comb copolymers with linear and hyperbranched multifunctional PEG. Macromol. Chem. Phys. 214, 1434–1444 (2013)

    Article  CAS  Google Scholar 

  86. H. Tsuji, Poly(lacticctide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol. Biosci. 5, 569–597, (2005)

    Article  CAS  PubMed  Google Scholar 

  87. H. Mao, P. Pan, G. Shan, Y. Bao, In situ formation and gelation mechanism of thermoresponsive stereocomplexed hydrogels upon mixing diblock and triblock poly(lacticctic acid)/poly (ethylene glycol) copolymers. J. Phys. Chem. B 119, 6471–6480 (2015)

    Article  CAS  PubMed  Google Scholar 

  88. E. Larrañeta, S. Stewart, M. Ervine, R. Al-Kasasbeh, R.F. Donnelly, Hydrogels for hydrophobic drug delivery. Classification, synthesis and applications. J. Funct. Biomater. 9, 13 (2018)

    Article  CAS  PubMed Central  Google Scholar 

  89. A.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine. (Academic Press, Cambridge, 2004)

    Google Scholar 

  90. G. Crini, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 30, 38–70 (2005)

    Article  CAS  Google Scholar 

  91. T. Coviello, P. Matricardi, C. Marianecci, F. Alhaique, Polysaccharide hydrogels for modified release formulations. J. Controlled Release 119, 5–24 (2007)

    Article  CAS  Google Scholar 

  92. Y. Hu, X. Wu, X. JinRui, Self-assembled supramolecular hydrogels formed by biodegradable PLA/CS diblock copolymers and β-cyclodextrin for controlled dual drug delivery. Int. J. Biol. Macromol. 108, 18–23 (2018)

    Article  CAS  PubMed  Google Scholar 

  93. S. De Jong, B. Van Eerdenbrugh, C.v. van Nostrum, J. Kettenes-Van Den, Bosch, W. Hennink, Physically crosslinked dextran hydrogels by stereocomplex formation of lactic acid oligomers: degradation and protein release behavior. J. Controlled Release 71, 261–275 (2001)

    Article  Google Scholar 

  94. I. Szekalska, A. Puciłowska, E. Szymańska, P. Ciosek, K. Winnicka, Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int. J. Polym. Sci. (2016). https://doi.org/10.1155/2016/7697031

    Article  Google Scholar 

  95. A. Martino, T.Y. Lee, S.-H. Kim, A.J. deMello, Microfluidic generation of PEG-b-PLA polymersomes containing alginate-based core hydrogel. Biomicrofluidics 9, 024101, (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. S. Sood, V.K. Gupta, S. Agarwal, K. Dev, D. Pathania, Controlled release of antibiotic amoxicillin drug using carboxymethyl cellulose-cl-poly(lacticctic acid-co-itaconic acid) hydrogel. Int. J. Biol. Macromol. 101, 612–620 (2017)

    Article  CAS  PubMed  Google Scholar 

  97. A. Khan, M. Sajjad, E. Khan, H.M. Akil, L.A. Shah, Z.H. Farooqi, Synthesis, characterization and physiochemical investigation of chitosan-based multi-responsive Copolymeric hydrogels. J. Polym. Res. 24, 170 (2017)

    Article  CAS  Google Scholar 

  98. W. Hennink, H. Talsma, J. Borchert, S. De Smedt, J. Demeester, Controlled release of proteins from dextran hydrogels. J. Controlled Release 39, 47–55 (1996)

    Article  CAS  Google Scholar 

  99. I. Naessens, A. Cerdobbel, W. Soetaert, E.J. Vandamme, Leuconostoc dextransucrase and dextran: production, properties and applications. J. Chem. Technol. Biotechnol. 80, 845–860 (2005)

    Article  CAS  Google Scholar 

  100. A.M. Bachelder, T.T. Beaudette, K.E. Broaders, J. Dashe, J.M. Fréchet, Acetal-derivatized dextran: an acid-responsive biodegradable material for therapeutic applications. J. Am. Chem. Soc. 130, 10494–10495 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. S. De Jong, S. De Smedt, J. Demeester, C. Van Nostrum, J. Kettenes-Van Den, Bosch, W. Hennink, Biodegradable hydrogels based on stereocomplex formation between lactic acid oligomers grafted to dextran. J. Controlled Release 72, 47–56 (2001)

    Article  Google Scholar 

  102. I. Ma, L. Deng, J. Chen, Applications of poly (ethylene oxide) in controlled release tablet systems: a review. Drug Dev. Ind. Pharm. 40, 845–851 (2014)

    Article  CAS  PubMed  Google Scholar 

  103. S. Dhawan, K. Dhawan, M. Varma, V. Sinha, Applications of poly (ethylene oxide) in drug delivery systems. Pharm. Technol. 29, 82–96 (2005)

    CAS  Google Scholar 

  104. T. Yamamoto, K. Inoue, Y. Tezuka, Hydrogel formation by the ‘topological conversion’of cyclic PLA–PEO block copolymers. Polym. J. 48, 391 (2016)

    Article  CAS  Google Scholar 

  105. S.H. Emami, R. Salovey, Crosslinked poly (ethylene oxide) hydrogels. J. Appl. Polym. Sci. 88, 1451–1455 (2003)

    Article  CAS  Google Scholar 

  106. S.R. Bhatia, G.N. Tew, in Degradable Polymers and Materials: Principles and Practice, 2nd edn, ed. by. C. Scholz, K.C. Khemani. PLA-PEO-PLA hydrogels chemical structure, self-assembly and mechanical properties (ACS Publications, Washington DC, 2012) pp. 313–324

    Google Scholar 

  107. I. Sanabria-DeLong, A.J. Crosby, G.N. Tew, Photo-cross-linked PLA-PEO-PLA hydrogels from self-assembled physical networks: mechanical properties and influence of assumed constitutive relationships. Biomacromol 9, 2784–2791 (2008)

    Article  CAS  Google Scholar 

  108. I. Molina, S. Li, M.B. Martinez, M. Vert, Protein release from physically crosslinked hydrogels of the PLA/PEO/PLA triblock copolymer-type. Biomaterials 22, 363–369 (2001)

    Article  CAS  PubMed  Google Scholar 

  109. S.H. Chen, C.T. Tsao, H.C. Chou, C.H. Chang, C.T. Hsu, C.N. Chuang et al., Synthesis of poly(lacticctic acid)-based polyurethanes. Polym. Int. 62, 1159–1168 (2013)

    Article  CAS  Google Scholar 

  110. I.H. Pereira, E. Ayres, P.S. Patrício, A.M. Góes, V.S. Gomide, E.P. Junior et al., Photopolymerizable and injectable polyurethanes for biomedical applications: synthesis and biocompatibility. Acta Biomater. 6, 3056–3066 (2010)

    Article  CAS  PubMed  Google Scholar 

  111. S. Corneillie, P.N. Lan, E. Schacht, M. Davies, A. Shard, R. Green et al., Polyethylene glycol-containing polyurethanes for biomedical applications. Polym. Int. 46, 251–259 (1998)

    Article  CAS  Google Scholar 

  112. A. Burke, N. Hasirci, in Biomaterials: From Molecules to Engineered Tissues, vol 553, ed. by N. Hasirci, V. Hasirci. Polyurethanes in biomedical applications (Springer, New York, 2004), pp. 83–101

    Chapter  Google Scholar 

  113. J.-B. Zeng, Y.-D. Li, W.-D. Li, K.-K. Yang, X.-L. Wang, Y.-Z. Wang, Synthesis and properties of poly (ester urethane) s consisting of poly (l-lactic acid) and poly (ethylene succinate) segments. Ind. Eng. Chem. Res. 48, 1706–1711 (2009)

    Article  CAS  Google Scholar 

  114. L.M. Gradinaru, C. Ciobanu, S. Vlad, M. Bercea, M. Popa, Thermoreversible poly (isopropyl lactate diol)-based polyurethane hydrogels: effect of isocyanate on some physical properties. Ind. Eng. Chem. Res. 51, 12344–12354 (2012)

    CAS  Google Scholar 

  115. X.J. Loh, Y.X. Tan, Z. Li, L.S. Teo, S.H. Goh, J. Li, Biodegradable thermogelling poly (ester urethane) s consisting of poly(lacticctic acid)–Thermodynamics of micellization and hydrolytic degradation. Biomaterials 29, 2164–2172 (2008)

    Article  CAS  PubMed  Google Scholar 

  116. S. Hsu, C.-W. Chen, K.-C. Hung, Y.-C. Tsai, S. Li, Thermo-responsive polyurethane hydrogels based on poly (ε-caprolactone) diol and amphiphilic polylactide-poly (ethylene glycol) block copolymers. Polymers 8, 252, 2016

    Article  CAS  PubMed Central  Google Scholar 

  117. A. Alexander, J. Khan, S. Saraf, S. Saraf, Poly (ethylene glycol)–poly(lacticctic-co-glycolic acid) based thermosensitive injectable hydrogels for biomedical applications. J. Controlled Release 172, 715–729 (2013)

    Article  CAS  Google Scholar 

  118. I.N. Mason, A.T. Metters, C.N. Bowman, K.S. Anseth, Predicting controlled-release behavior of degradable PLA-b-PEG-b-PLA hydrogels. Macromolecules 34, 4630–4635 (2001)

    Article  CAS  Google Scholar 

  119. I. Lee, Y.H. Bae, Y.S. Sohn, B. Jeong, Thermogelling aqueous solutions of alternating multiblock copolymers of poly (l-lactic acid) and poly (ethylene glycol). Biomacromolecules 7, 1729–1734 (2006)

    Article  CAS  PubMed  Google Scholar 

  120. A. Hiemstra, Z. Zhong, L. Li, P.J. Dijkstra, J. Feijen, In-situ formation of biodegradable hydrogels by stereocomplexation of PEG–(PLLA) 8 and PEG–(PDLA) 8 star block copolymers. Biomacromol 7, 2790–2795 (2006)

    Article  CAS  Google Scholar 

  121. A. Hiemstra, Z. Zhong, S.R. Van Tomme, M.J. van Steenbergen, J.J. Jacobs, W. Den Otter et al., In vitro and in vivo protein delivery from in situ forming poly (ethylene glycol)–poly(lacticctide) hydrogels. J. Controlled release 119, 320–327 (2007)

    Article  CAS  Google Scholar 

  122. A. Hiemstra, Z. Zhong, P.J. Dijkstra, J. Feijen, in Hydrogels, ed. by R. Barbucci. PEG-PLA stereocomplexed hydrogels (Springer, Milan, 2009), pp. 53–65

    Chapter  Google Scholar 

  123. Y. Zhang, X. Wu, Y. Han, F. Mo, Y. Duan, S. Li, Novel thymopentin release systems prepared from bioresorbable PLA–PEG–PLA hydrogels. Int. J. Pharm. 386, 15–22 (2010)

    Article  CAS  PubMed  Google Scholar 

  124. I. Chen, T. Ci, T. Li, L. Yu, J. Ding, Effects of molecular weight distribution of amphiphilic block copolymers on their solubility, micellization, and temperature-induced sol–gel transition in water. Macromolecules 47, 5895–5903 (2014)

    Article  CAS  Google Scholar 

  125. Y.I. Hsu, K. Masutani, T. Yamaoka, Y. Kimura, Tuning of sol–gel transition in the mixed polymer micelle solutions of copolymer mixtures consisting of enantiomeric diblock and triblock copolymers of polylactide and poly (ethylene glycol). Macromol. Chem. Phys. 216, 837–846 (2015)

    Article  CAS  Google Scholar 

  126. Y.-I. Hsu, K. Masutani, T. Yamaoka, Y. Kimura, Strengthening of hydrogels made from enantiomeric block copolymers of polylactide (PLA) and poly(ethylene glycol) (PEG) by the chain extending Diels–Alder rPolymer 67, 157–166 (2015)

    Article  CAS  Google Scholar 

  127. H. Mao, G. Shan, Y. Bao, Z.L. Wu, P. Pan, Thermoresponsive physical hydrogels of poly(lacticctic acid)/poly (ethylene glycol) stereoblock copolymers tuned by stereostructure and hydrophobic block sequence. Soft Matter 12, 4628–4637, (2016)

    Article  CAS  PubMed  Google Scholar 

  128. H. Cho, J. Gao, G.S. Kwon, PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol–gels for drug delivery. J. Controlled Release 240, 191–201 (2016)

    Article  CAS  Google Scholar 

  129. S.J. Buwalda, P.J. Dijkstra, J. Feijen, In situ forming stereocomplexed and post-photocrosslinked acrylated star poly(ethylene glycol)-poly(lactide) hydrogels. Eur. Polymer J. 94, 152–161 (2017)

    Article  CAS  Google Scholar 

  130. I. Saini, M. Arora, M.R. Kumar, Poly(lacticctic acid) blends in biomedical applications. Adv. Drug Deliv. Rev. 107, 47–59 (2016)

    Article  CAS  PubMed  Google Scholar 

  131. R. Song, F. Liu, J. Yang, L. Yao, L. He, B. Qin, Novel pH-sensitive lactic acid oligomer grafted chitosan hydrogel for controlled drug release. J. Macromol. Sci. Part B 50, 1260–1269 (2011)

    Article  CAS  Google Scholar 

  132. A. Behnoodfar, S. Dadbin, M. Frounchi, PLA microspheres-embedded PVA hydrogels prepared by gamma-irradiation and freeze-thaw methods as drug release carriers. Int. J. Polym. Mater. 62, 28–33 (2013)

    Article  CAS  Google Scholar 

  133. I. Prabhakar, P. Sudhakara, M. Subha, K.C. Rao, J.I. Song, Novel thermoresponsive biodegradable nanocomposite hydrogels for dual function in biomedical applications. Polym.-Plast. Technol. Eng. 54, 1704–1714 (2015)

    Article  CAS  Google Scholar 

  134. J. Su, S. Wang, S. Zhu, X. Liu, Yu, S. Li, Synthesis and characterization of novel carboxymethyl chitosan grafted polylactide hydrogels for controlled drug delivery. Polym. Adv. Technol. 26, 924–931 (2015)

    Article  CAS  Google Scholar 

  135. J. Zhao, Y. Mi, Y. Liu, S.-S. Feng, Quantitative control of targeting effect of anticancer drugs formulated by ligand-conjugated nanoparticles of biodegradable copolymer blend. Biomaterials 33, 1948–1958 (2012)

    Article  CAS  PubMed  Google Scholar 

  136. J. Pan, S.-S. Feng, Targeted delivery of paclitaxel using folate-decorated poly(lacticctide)–vitamin E TPGS nanoparticles. Biomaterials 29, 2663–2672 (2008)

    Article  CAS  PubMed  Google Scholar 

  137. A. Jeong, Y.H. Bae, S.W. Kim, Drug release from biodegradable injectable thermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers. Journal of Controlled Release 63, 155–163 (2000)

    Article  CAS  PubMed  Google Scholar 

  138. H. Cho, G.S. Kwon, Thermosensitive poly-(d, l-lactide-co-glycolide)-block-poly (ethylene glycol)-block-poly-(d, l-lactide-co-glycolide) hydrogels for multi-drug delivery. J. Drug Target. 22, 669–677 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Y. Zhang, C.C. Chu, Biodegradable dextran–polylactide hydrogel networks: their swelling, morphology and the controlled release of indomethacin. J. Biomed. Mater. Res. 59, 318–328 (2002)

    Article  CAS  PubMed  Google Scholar 

  140. Z. Zhang, Q. Lv, X. Gao, L. Chen, Y. Cao, S. Yu et al., pH-responsive poly (ethylene glycol)/poly (l-lactide) supramolecular micelles based on host–guest interaction. ACS Appl. Mater. Interfaces 7, 8404–8411, (2015)

    Article  CAS  PubMed  Google Scholar 

  141. Q. He, J. Yang, J. Li, J. Xin, J. Li, Cyclodextrin-conjugated poly(lacticctic acid)-b–poly (ethylene glycol) micelles as a potential controlled drug release system, J. Controlled Release 172, e60–e61, (2013)

    Article  CAS  Google Scholar 

  142. Q. He, W. Wu, K. Xiu, Q. Zhang, F. Xu, J. Li, Controlled drug release system based on cyclodextrin-conjugated poly(lacticctic acid)-b-poly (ethylene glycol) micelles. Int. J. Pharm. 443, 110–119 (2013)

    Article  CAS  PubMed  Google Scholar 

  143. Y.J. Kim, S. Choi, J.J. Koh, M. Lee, K.S. Ko, S.W. Kim, Controlled release of insulin from injectable biodegradable triblock copolymer. Pharm. Res. 18, 548–550 (2001)

    Article  CAS  PubMed  Google Scholar 

  144. S. Chen, J. Singh, Controlled delivery of testosterone from smart polymer solution based systems: in vitro evaluation. Int. J. Pharm. 295, 183–190 (2005)

    Article  CAS  PubMed  Google Scholar 

  145. S. Chen, J. Singh, In vitro release of levonorgestrel from phase sensitive and thermosensitive smart polymer delivery systems. Pharm. Dev. Technol. 10, 319–325 (2005)

    Article  CAS  PubMed  Google Scholar 

  146. S. Duvvuri, K.G. Janoria, A.K. Mitra, Development of a novel formulation containing poly (d, l-lactide-co-glycolide) microspheres dispersed in PLGA–PEG–PLGA gel for sustained delivery of ganciclovir. J. Controlled release 108, 282–293 (2005)

    Article  CAS  Google Scholar 

  147. N.K. Singh, Q.V. Nguyen, B.S. Kim, D.S. Lee, Nanostructure controlled sustained delivery of human growth hormone using injectable, biodegradable, pH/temperature responsive nanobiohybrid hydrogel. Nanoscale 7, 3043–3054 (2015)

    Article  CAS  PubMed  Google Scholar 

  148. E. Khodaverdi, F. Hadizadeh, F.S.M. Tekie, A. Jalali, S.A. Mohajeri, F. Ganji, Preparation and analysis of a sustained drug delivery system by PLGA–PEG–PLGA triblock copolymers. Polym. Bull. 69, 429–438 (2012)

    Article  CAS  Google Scholar 

  149. J.S. Boateng, K.H. Matthews, H.N. Stevens, G.M. Eccleston, Wound healing dressings and drug delivery systems: a review. J. Pharm. Sci. 97, 2892–2923 (2008)

    Article  CAS  PubMed  Google Scholar 

  150. E. Caló, V.V. Khutoryanskiy, Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polymer J. 65, 252–267 (2015)

    Article  CAS  Google Scholar 

  151. J. Koehler, F.P. Brandl, A.M. Goepferich, Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur. Polym. J. 100, 1–11 (2018)

    Article  CAS  Google Scholar 

  152. Z. Li, W. Ning, J. Wang, A. Choi, P.-Y. Lee, P. Tyagi et al., Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharm. Res. 20, 884–888 (2003)

    Article  CAS  PubMed  Google Scholar 

  153. P.-Y. Lee, Z. Li, L. Huang, Thermosensitive hydrogel as a Tgf-β1 gene delivery vehicle enhances diabetic wound healing. Pharm. Res. 20, 1995–2000, (2003)

    Article  CAS  PubMed  Google Scholar 

  154. X. Xu, G. Zhou, X. Li, X. Zhuang, W. Wang, Z. Cai et al., Solution blowing of chitosan/PLA/PEG hydrogel nanofibers for wound dressing. Fibers Polym. 17, 205–211 (2016)

    Article  CAS  Google Scholar 

  155. S. Perumal, D. Pappuru, A. Chakraborty, D.K. Maya Nandkumar, Chand, M. Doble, Synthesis and characterization of curcumin loaded PLA—hyperbranched polyglycerol electrospun blend for wound dressing applications. Mater. Sci. Eng.: C 76, 1196–1204 (2017)

    Article  CAS  Google Scholar 

  156. R.A.A. Alsaheb, A. Aladdin, N.Z. Othman, R.A. Malek, O.M. Leng, R. Aziz et al., Recent applications of polylactic acid in pharmaceutical and medical industries. J Chem Pharm Res 7, 51–63 (2015)

    Google Scholar 

  157. A. Burdick, M.N. Mason, A.D. Hinman, K. Thorne, K.S. Anseth, Delivery of osteoinductive growth factors from degradable PEG hydrogels influences osteoblast differentiation and mineralization. J. Controlled Release 83, 53–63 (2002)

    Article  CAS  Google Scholar 

  158. M. Santoro, S.R. Shah, J.L. Walker, A.G. Mikos, Poly(lacticctic acid) nanofibrous scaffolds for tissue engineering. Adv. Drug Deliv. Rev. 107, 206–212 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. G. Lin, L. Cosimbescu, N.J. Karin, B.J. Tarasevich, Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: preparation, characterization and in vitro release behavior. Biomed. Mater. 7, 024107 (2012)

    Article  CAS  PubMed  Google Scholar 

  160. A. Dhillon, P. Schneider, G. Kuhn, Y. Reinwald, L.J. White, A. Levchuk et al., Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing. J. Mater. Sci.: Mater. Med. 22, 2599–2605 (2011)

    CAS  Google Scholar 

  161. E. Vidović, D. Klee, H. Höcker, Evaluation of water uptake and mechanical properties of biomedical polymers. J. Appl. Polym. Sci. 130, 3682–3688 (2013)

    Article  CAS  Google Scholar 

  162. D.S. Puperi, A. Kishan, Z.E. Punske, Y. Wu, E. Cosgriff-Hernandez, J.L. West et al., Electrospun polyurethane and hydrogel composite scaffolds as biomechanical mimics for aortic valve tissue engineering. ACS Biomater. Sci. Eng. 2, 1546–1558 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of Higher Education Commission of Pakistan for this study. Data availability. This is a review article so no raw data involved in it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulfiqar Ali Raza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munim, S.A., Raza, Z.A. Poly(lactic acid) based hydrogels: formation, characteristics and biomedical applications. J Porous Mater 26, 881–901 (2019). https://doi.org/10.1007/s10934-018-0687-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0687-z

Keywords

Navigation