Skip to main content

Advertisement

Log in

Nitrogen-containing high surface area carbon cryogel from co-condensed phenol–urea–formaldehyde resin for CO2 capture

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A cost-effective nitrogen-doped super high surface area carbon cryogel has been successfully synthesized from phenol–urea–formaldehyde (PUF) resin. Pore structure and chemical characteristics were investigated using scanning electron microscopy, Fourier transform infrared spectroscopy, element analysis, X-ray photoelectron spectrometry, mercury porosimetry and N2 adsorption–desorption. It was found that the organic cryogel with mesopores and macropores from PUF resin having a N content of 9.03 wt%, which is an ideal precursor for preparing N-doped carbon cryogels. The carbon cryogel obtained having a high apparent surface area of up to 1710 m2/g, large micropore volumes up to 0.64 cm3/g, a small average micropore width of 1.04 nm and a moderate nitrogen content of 2.08 wt%. The lab-made carbon cryogel showed good CO2/N2 sorption selectivity, 15.8:1 at 273 K and 16.4:1 at 298 K. The CO2 capture capacities as high as 5.5 mmol/g at 273 K and 4.5 mmol/g at 298 K up to 1 bar were obtained, which were among the highest compared to other commercial carbon materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Hamano, S. Tsujimura, O. Shirai, K. Kano, Mater. Lett. 128, 191 (2014)

    Article  CAS  Google Scholar 

  2. A. Szczurek, G. Amaral-Labat, V. Fierro, A. Pizzi, A.E. Masson, A. Celzard, Mater. Chem. Phys. 129, 1221 (2011)

    Article  CAS  Google Scholar 

  3. A. Szczurek, K. Jurewicz, G. Amaral-Labat, V. Fierro, A. Pizzi, A. Celzard, Carbon 48, 3874 (2010)

    Article  CAS  Google Scholar 

  4. H. Ren, J. Zhu, Y. Bi, Y. Xu, L. Zhang, C. Shang, J. Porous Mater. 24, 1165 (2017)

    Article  CAS  Google Scholar 

  5. W. Li, G. Reichenauer, J. Fricke, Carbon 40, 2955 (2002)

    Article  CAS  Google Scholar 

  6. F.L. Braghiroli, V. Fierro, A. Szczurek, N. Stein, J. Parmentier, A. Celzard, Carbon 90, 63 (2015)

    Article  CAS  Google Scholar 

  7. B.S. Yang, K.Y. Kang, M.J.J. Jeong, Korean Phys. Soc. 71, 478 (2017)

    Article  CAS  Google Scholar 

  8. G. Du, H. Lei, A. Pizzi, H. Pasch, J. Appl. Polym. Sci. 110, 1182 (2008)

    Article  CAS  Google Scholar 

  9. C. Zhao, A. Pizzi, A. Kühn, S. Garnier, J. Appl. Polym. Sci. 77, 249 (2000)

    Article  CAS  Google Scholar 

  10. G. Amaral-Labat, A. Szczurek, V. Fierro, A. Pizzi, E. Masson, A. Celzard, Microporous Mesoporous Mater. 158, 272 (2012)

    Article  CAS  Google Scholar 

  11. X.L. Zhu, P.Y. Wang, C. Peng, J. Yang, X. Yan, Chin. Chem. Lett. 25, 929 (2014)

    Article  CAS  Google Scholar 

  12. J. Serafin, U. Narkiewicz, A.W. Morawski, J. CO2 Util. 18, 73 (2017)

    Article  CAS  Google Scholar 

  13. L. Luo, T. Chen, Z. Li, Z. Zhang, W. Zhao, M. Fan, J. CO2 Util. 25, 89 (2018)

    Article  CAS  Google Scholar 

  14. M. Zhong, S. Natesakhawat, J.P. Baltrus, D. Luebke, H. Nulwala, K. Matyjaszewski, T. Kowalewski, Chem. Commun. 48, 11516 (2012)

    Article  CAS  Google Scholar 

  15. M. Nandi, K. Okada, A. Dutta, A. Bhaumik, J. Maruyama, D. Derks, H. Uyama, Chem. Commun. 48, 10283 (2012)

    Article  CAS  Google Scholar 

  16. B. Ashourirad, A.K. Sekizkardes, S. Altarawneh, H.M. El-Kaderi, Chem. Mater. 27, 1349 (2015)

    Article  CAS  Google Scholar 

  17. G. Rasines, P. Lavela, C. Macías, M.C. Zafra, J.L. Tirado, J.B. Parra, C.O. Ania, Carbon 83, 262 (2015)

    Article  CAS  Google Scholar 

  18. C. Zhu, S. Fu, J. Song, Q. Shi, D. Su, M.H. Engelhard, X. Li, D. Xiao, D. Li, L. Estevez, D. Du, Y. Lin, Small 13, 1603407 (2017)

    Article  CAS  Google Scholar 

  19. S.P. Sasikala, H. Kai, B. Giroire, ACS Appl. Mater. Interfaces 8, 30964 (2016)

    Article  CAS  PubMed  Google Scholar 

  20. L. Luo, T. Chen, W. Zhao, M. Fan, Bioresources 12, 6237 (2017)

    CAS  Google Scholar 

  21. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1051 (2015)

    Article  CAS  Google Scholar 

  22. D. Wu, R. Fu, Z. Sun, Z. Yu, J. Non-Cryst. Solids 351, 915 (2005)

    Article  CAS  Google Scholar 

  23. A.M. Saeed, P.M. Rewatkar, H.M. Far, T. Taghvaee, S. Donthula, C. Mandal, ACS Appl. Mater. Interfaces 9, 13520 (2017)

    Article  CAS  PubMed  Google Scholar 

  24. J. An, S.J. Geib, N.L. Rosi, J. Am. Chem. Soc. 132, 38 (2010)

    Article  CAS  PubMed  Google Scholar 

  25. X. Li, Z.Y. Sui, Y.N. Sun, P.W. Xiao, X.Y. Wang, B.H. Han, Microporous Mesoporous Mater. 257, 85 (2018)

    Article  CAS  Google Scholar 

  26. L. Yue, Q. Xia, L. Wang, L. Wang, H. Dacosta, J.J. Yang, Colloid. Interfaces Sci. 511, 259 (2018)

    Article  CAS  Google Scholar 

  27. T. Ratvijitvech, R. Dawson, A. Laybourn, Y.Z. Khimyak, D.J. Adams, A.I. Copper, Polymer 55, 321 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present research was supported by the National Natural Science Foundation of China (31300488) and the Fujian Agriculture and Forestry University Fund for Distinguished Young Scholars (xjq201420).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mizi Fan or Weigang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Chen, T., Wu, X. et al. Nitrogen-containing high surface area carbon cryogel from co-condensed phenol–urea–formaldehyde resin for CO2 capture. J Porous Mater 26, 847–854 (2019). https://doi.org/10.1007/s10934-018-0680-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0680-6

Keywords

Navigation