Skip to main content
Log in

Mesoporous silica submicron particles (MCM-41) incorporating nanoscale Ag: synthesis, characterization and application as drug delivery coatings

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Mesoporous silica particles (MCM-41) decorated with Ag nanoparticles were prepared by the template ion exchange (TIE) method. The properties of the synthesized material were investigated by several techniques, including the nitrogen sorption measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FTIR). Moreover, the degradability of the particles was tested in simulated body fluid (SBF) in order to evaluate the degradation rate of the material. The silica particles were loaded with different Ag concentrations but no structural changes were observed in the ordered mesoporosity. Already after 1 day of immersion in SBF most of the silver particles were released and partial degradation of the silica particles was observed. Ibuprofen was loaded into the Ag containing MCM-41 particles in order to evaluate their drug up-take/release capability. Silver and silicon ion release was quantified with inductively coupled plasma optical emission spectroscopy (ICP-OES). The novel silver doped MCM-41 particles were used as a functional coating on bioactive glass (BG) based scaffolds intended for bone tissue engineering application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.S. Beck, C.T.W. Chu, I.D. Johnson, C.T. Kresge, M.E. Leonwicz, W.J. Roth, U.S. Patent 50, 108 725 (1992)

    Google Scholar 

  2. D. Zhao, Y. Wan, W. Zhou, Ordered Mesoporous Materials. (Wiley, New York, 2013)

    Book  Google Scholar 

  3. M. Vallet-Regí, M. Manzano-García, M. Colilla, Biomedical Applications of Mesoporous Ceramics. (CRC Press, Boca Raton, 2012)

    Book  Google Scholar 

  4. M. Vallet-Regí, I. Izquierdo-Barba, M. Colilla, Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery. Philos. Trans. 370(1963), 1400–1421 (2012). https://doi.org/10.1098/rsta.2011.0258

    Article  CAS  Google Scholar 

  5. M. Vallet-Regí, Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chemistry 12(23), 5934–5943 (2006). https://doi.org/10.1002/chem.200600226

    Article  CAS  PubMed  Google Scholar 

  6. X. Yan, X. Huang, C. Yu et al., The in-vitro bioactivity of mesoporous bioactive glasses. Biomaterials 27(18), 3396–3403 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.043

    Article  CAS  PubMed  Google Scholar 

  7. M. Grün, K.K. Unger, A. Matsumoto, K. Tsutsumi, Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Microporous Mesoporous Mater. 27(2–3), 207–216 (1999). https://doi.org/10.1016/S1387-1811(98)00255-8

    Article  Google Scholar 

  8. W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26(1), 62–69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  9. M. Iwamoto, Y. Tanaka, Preparation of metal ion-planted mesoporous silica by template ion-exchange method and its catalytic activity for asymmetric oxidation of sulfide. Catal. Surv. 5(1), 25–36 (2001). https://doi.org/10.1023/A:1012257731538

    Article  CAS  Google Scholar 

  10. M. Vallet-Regi, A. Rámila, R.P. del Real, J. Pérez-Pariente, A new property of MCM-41: drug delivery system. Chem. Mater. 13(2), 308–311 (2001). https://doi.org/10.1021/cm0011559

    Article  CAS  Google Scholar 

  11. C. Wu, J. Chang, Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J. Control. Release 2014:1–14 https://doi.org/10.1016/j.jconrel.2014.04.026

  12. R. Mortera, B. Onida, S. Fiorilli et al., Synthesis and characterization of MCM-41 spheres inside bioactive glass–ceramic scaffold. Chem. Eng. J. 137(1), 54–61 (2008). https://doi.org/10.1016/j.cej.2007.07.094

    Article  CAS  Google Scholar 

  13. E. Boccardi, A. Philippart, J.A. Juhasz-Bortuzzo et al., Uniform surface modification of 3D bioglass®-based scaffolds with mesoporous silica particles (MCM-41) for enhancing drug delivery capability. Front. Bioeng. Biotechnol. 3, 177 (2015). https://doi.org/10.3389/fbioe.2015.00177

    Article  PubMed  PubMed Central  Google Scholar 

  14. E. Boccardi, Natural Marine Derived Bioactive Glass Based Scaffolds with Improved Functionalities (Dissertation, University of Erlangen-Nuremberg, 2016)

  15. K. Misch, H.-L. Wang, Implant surgery complications: etiology and treatment. Implant Dent. 17(2), 159–168 (2008). https://doi.org/10.1097/ID.0b013e3181752f61

    Article  PubMed  Google Scholar 

  16. D. Kozon, K. Zheng, E. Boccardi, Y. Liu, L. Liverani, A. Boccaccini, Synthesis of monodispersed Ag-doped bioactive glass nanoparticles via surface modification. Materials 9(4), 225 (2016). https://doi.org/10.3390/ma9040225

    Article  CAS  PubMed Central  Google Scholar 

  17. J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta, S. Mukherji, Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 4(3), 707–716 (2008). https://doi.org/10.1016/j.actbio.2007.11.006

    Article  CAS  PubMed  Google Scholar 

  18. R.E. Hall, G. Bender, R.E. Marquis, Inhibitory and cidal antimicrobial actions of electrically generated silver ions. J. Oral Maxillofac. Surg. 45(9), 779–784 (1987). https://doi.org/10.1016/0278-2391(87)90202-3

    Article  CAS  PubMed  Google Scholar 

  19. B. Fan, W. Fan, D. Wu, F. Tay, T. Ma, Y. Wu, Effects of adsorbed and templated nanosilver in mesoporous calcium-silicate nanoparticles on inhibition of bacteria colonization of dentin. Int. J. Nanomed 9, 5217 (2014). https://doi.org/10.2147/IJN.S73144

    Article  CAS  Google Scholar 

  20. W. Gac, A. Derylo-Marczewska, S. Pasieczna-Patkowska, N. Popivnyak, G. Zukocinski, The influence of the preparation methods and pretreatment conditions on the properties of Ag-MCM-41 catalysts. J. Mol. Catal. 268(1–2), 15–23 (2007). https://doi.org/10.1016/j.molcata.2006.12.002

    Article  CAS  Google Scholar 

  21. T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15), (2006). https://doi.org/10.1016/j.biomaterials.2006.01.017. 2907–2915

    Article  CAS  PubMed  Google Scholar 

  22. M. Cerruti, D. Greenspan, K. Powers, Effect of pH and ionic strength on the reactivity of Bioglass® 45S5. Biomaterials 26(14), 1665–1674 (2005). https://doi.org/10.1016/j.biomaterials.2004.07.009

    Article  CAS  PubMed  Google Scholar 

  23. A.L.B. Maçon, T.B. Kim, E.M. Valliant et al., A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J. Mater. Sci. Mater. Med. 26(2), 115 (2015). https://doi.org/10.1007/s10856-015-5403-9

    Article  CAS  PubMed  Google Scholar 

  24. L.L. Hench, The story of Bioglass. J. Mater. Sci. Mater. Med. 17(11), 967–978 (2006). https://doi.org/10.1007/s10856-006-0432-z

    Article  CAS  PubMed  Google Scholar 

  25. Q.Z. Chen, I.D. Thompson, A.R. Boccaccini, 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials 27(11), 2414–2425 (2006). https://doi.org/10.1016/j.biomaterials.2005.11.025

    Article  CAS  PubMed  Google Scholar 

  26. E. Boccardi, A. Philippart, J.A. Juhasz-Bortuzzo, G. Novajra, C. Vitale-Brovarone, A.R. Boccaccini, Characterisation of Bioglass based foams developed via replication of natural marine sponges. Adv. Appl. Ceram. 114, S56–S62 (2015). https://doi.org/10.1179/1743676115Y.0000000036

    Article  CAS  Google Scholar 

  27. O. Peitl, E. Dutra Zanotto, L.L. Hench, Highly bioactive P2O5–Na2O–CaO–SiO2 glass-ceramics. J. Non. Cryst. Solids 292(1–3), 115–126 (2001). https://doi.org/10.1016/S0022-3093(01)00822-5

    Article  CAS  Google Scholar 

  28. Á Szegedi, M. Popova, K. Yoncheva, J. Makk, J. Mihály, P. Shestakova, Silver- and sulfadiazine-loaded nanostructured silica materials as potential replacement of silver sulfadiazine. J. Mater. Chem. 2(37), 6283 (2014). https://doi.org/10.1039/C4TB00619D

    Article  CAS  Google Scholar 

  29. I.D. Xynos, M.V.J. Hukkanen, J.J. Batten, L.D. Buttery, L.L. Hench, J.M. Polak, Bioglass ®45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif. Tissue Int. 67(4), 321–329 (2000). https://doi.org/10.1007/s002230001134

    Article  CAS  PubMed  Google Scholar 

  30. I.D. Xynos, A.J. Edgar, L.D.K. Buttery, L.L. Hench, J.M. Polak, Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem. Biophys. Res. Commun. 276(2), 461–465 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This manuscript is based on the doctoral thesis of E. Boccardi, University of Erlangen-Nuremberg, Germany. AMB thanks Talent-Hub Program funded by the Junta de Andalucía and the European Commission under the Co-funding of the 7th Framework Program in the People Program (Marie Curie Special Action). Authors also acknowledge the Laboratory for Nanoscopies and Spectroscopies (LANE) at the ICMS for the TEM facilities and for CG for BET measurements. LL acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 657264.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Boccaccini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boccardi, E., Liverani, L., Beltrán, A.M. et al. Mesoporous silica submicron particles (MCM-41) incorporating nanoscale Ag: synthesis, characterization and application as drug delivery coatings. J Porous Mater 26, 443–453 (2019). https://doi.org/10.1007/s10934-018-0621-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0621-4

Keywords

Navigation