Skip to main content
Log in

A simple synthesis of nitrate cancrinite from natural bentonite

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A nearly pure, pale brown, spherical, nitrate cancrinite zeolite was successfully synthesized from natural bentonite as starting material with acidic activation treatment via hydrothermal method at 368 K for 24 h. The effect of different NaOH concentrations (pH at around 12) was investigated without addition of silica and aluminum sources. The effect of different NaOH concentrations (pH at around 12) was investigated without addition of silica and aluminum sources. The final products were characterized by powder X-ray diffraction, scanning electron microscopy, elemental and thermal analyses, infrared (IR) spectroscopy, and Brunauer–Emmett–Teller (BET) surface area measurements. While the Si/Al ratio of ideal cancrinite is 1.0, the Si/Al ratio of the product framework is approximately 1.76, apart from trace components. Unique single nitrate band was observed in both IR and thermogravimetric measurements, indicating that pure cancrinite was synthesized. This study showed that pure nitrate cancrinite was obtained with NaOH concentrations from 8 to 12 M, independent of NaOH contents on crystallization. Through this study, we proposed a simple synthesis method for pure nitrate cancrinite from bentonite for the purpose of recycling natural clay minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D.W. Breck, Zeolite Molecular Sieves. (Wiley, New York, 1974)

    Google Scholar 

  2. A. Chaisena, K. Rangsriwatananon, Mater. Lett. 59, 1474–1479 (2005)

    Article  CAS  Google Scholar 

  3. H. Faghihian, N. Godazandeha, J. Porous Mater. 16, 331–335 (2009)

    Article  CAS  Google Scholar 

  4. H. Ma, Q. Yao, Y. Fu, C. Ma, X. Dong, Ind. Eng. Chem. Res. 49, 454–458 (2010)

    Article  CAS  Google Scholar 

  5. C. Chen, D.-W. Park, W.-S. Ahn, Appl. Surf. Sci. 292, 63–37 (2014)

    Article  CAS  Google Scholar 

  6. J.-Ch Buhl, F. Stief, M. Fechtelkord, T.M. Gesing, U. Taphorn, C. Taake, J. Alloys Compd. 305, 93–102 (2000)

    Article  CAS  Google Scholar 

  7. C. Baerlocher, L. McCusker, Data of zeolite structures, http://www.iza-structure.org/databases/

  8. G. Gossner, F. Mussgnug, Z. Kristallogr. 73, 52–60 (1930)

    CAS  Google Scholar 

  9. O. Jarchow, Fortschr. Miner. 40, 55–56 (1962)

    Google Scholar 

  10. O. Jarchow, Z. Kristallogr. 122, 407–422 (1965)

    Article  Google Scholar 

  11. H.D. Grundy, I. Hassan, Can. Miner. 20, 239–251 (1982)

    CAS  Google Scholar 

  12. I. Hassan, H.D. Grundy, Can. Miner. 29, 377–383 (1991)

    CAS  Google Scholar 

  13. I. Hassan, P.R. Buseck, Can. Miner. 30, 49–59 (1992)

    CAS  Google Scholar 

  14. M. Sirbescu, D.M. Jenkins, Am. Miner. 84, 1850–1860 (1999)

    Article  CAS  Google Scholar 

  15. K. Hackbarth, Th..M. Gesing, M. Fechtelkord, F. Stief, J.-C. Buhl, Microporous Mesoporous Mater. 30, 347–358 (1999)

    Article  CAS  Google Scholar 

  16. W. Eitel, Jb. Miner. II 45–61 (1922)

    Google Scholar 

  17. A.D. Edgar, B.J. Burley, Can. Miner. 7, 631–642 (1963)

    CAS  Google Scholar 

  18. A.D. Edgar, Can. Miner. 8, 53–67 (1963)

    Google Scholar 

  19. Y.I. Smolin, Y.F. Shepelev, I.K. Butikova, I.B. Kobyakov, Sov. Phys. Crystallogr. 26, 33–35 (1981)

    Google Scholar 

  20. A. Emiraliev, I.I. Yamzin, Sov. Phys. Crystallogr. 27, 27–30 (1982)

    Google Scholar 

  21. J.-C. Buhl, Thermochim. Acta. 178, 19–31 (1991)

    Article  CAS  Google Scholar 

  22. G. Hermeler, J.-Ch Buhl, W. Hoffmann, Catal. Today. 8, 415–426 (1991)

    Article  CAS  Google Scholar 

  23. N. Bresciani-Pahor, M. Calligaris, G. Nandin, L. Randaccio, Acta Cryst. B38, 893–895 (1982)

    Article  Google Scholar 

  24. R. Klaska, K.-H. Klaska, O. Jarchow, Z. Kristallogr. 149, 135–137 (1979)

    Google Scholar 

  25. R.M. barrer, J.F. Cole, H. Villiger, J. Chem. Soc. A. 1523–1531 (1970)

  26. F. Hund, Z. Anorg. Allg. Chem. 509, 153–160 (1984)

    Article  CAS  Google Scholar 

  27. Q. Liu, H. Xu, A. Navrotsky, Microporous Mesoporous Mater. 87, 146–152 (2005)

    Article  CAS  Google Scholar 

  28. F. Ocanto, R. Álvarez, C.U. de Navarro, A. Lieb, C.F. Linares, Microporous Mesoporous Mater. 116, 318–322 (2008)

    Article  CAS  Google Scholar 

  29. N. Bresciani Pahor, M. Calligaris, L. Randaccio, Acta Crystallogr. B38, 893–895 (1982)

    Article  Google Scholar 

  30. K. Latham, C.D. Williams, C.V.A. Duke, Zeolites. 17, 513–516 (1996)

    Article  CAS  Google Scholar 

  31. G.-G. Lindner, K. Hoffmann, K. Witke, D. Reinen, C. Heinemann, W. Koch, J. Solid State Chem. 126, 50–54 (1996)

    Article  CAS  Google Scholar 

  32. E. Gamiz, J. Linares, R. Delgado, Appl. Clay Sci. 6, 359–368 (1992)

    Article  CAS  Google Scholar 

  33. R. Bolger, Ind. Min. 52–63 (1995)

  34. F.H. Lin, Y.H. Lee, C.H. Jian, J.M. Wong, M.J. Shieh, C.Y. Wang, Biomaterials. 23, 1981–1987 (2002)

    Article  CAS  Google Scholar 

  35. M.I. Carretero, Appl. Clay Sci. 21, 155–163 (2002)

    Article  CAS  Google Scholar 

  36. A. López-Galindo, C. Viseras, P. Cerezo, Appl. Clay Sci. 36, 51–63 (2007)

    Article  Google Scholar 

  37. J.-H. Choy, S.-J. Choi, J.-M. Oh, T. Park, Appl. Clay Sci. 36, 122–132 (2007)

    Article  CAS  Google Scholar 

  38. A. Abdel-Motelib, Z.A. Kader, Y.A. Ragab, M. Mosalamy, Appl. Clay Sci. 52, 140–144 (2011)

    Article  CAS  Google Scholar 

  39. I. Valentina, M. Eleonora, S. Francesca, R. Marcello, B. Alessia, T. Eleonora, M. Paola, E. Leo, Clays Clay Miner. 64(6), 719–731 (2016)

    Article  Google Scholar 

  40. Advanced integrated, X-ray powder diffraction suite. Rigaku J. 28(1), 29–30 (2012)

  41. E.M. Flanigen, H. Kathami, H.A. Szymanski, Adv. Chem. Ser. Mol Sieve Zeolites I 101, 201–229 (1971)

    Article  CAS  Google Scholar 

  42. H. Shao, T.J. Pinnavaia, Microporous Mesoporous Mater. 133, 10–17 (2010)

    Article  CAS  Google Scholar 

  43. M.C. Barnes, J. Addai-Mensah, A.R. Gerson, Colloid Surf. A 157, 101–116 (1999)

    Article  CAS  Google Scholar 

  44. M.C. Barnes, J. Addai-Mensah, A.R. Gerson, Microporous Mesoporous Mater. 31, 287–302 (1999)

    Article  CAS  Google Scholar 

  45. C.F. Linares, S. Sánchez, C.U. de Navarro, K. Rodríguez, M.R. Goldwasser, Microporous Mesoporous Mater. 77, 215–221 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Research Project (Grant 18-3214) of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Science, ICT, and Future Planning of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung Man Seo or Ki-Min Roh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 576 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, S.M., Kim, D., Kim, D. et al. A simple synthesis of nitrate cancrinite from natural bentonite. J Porous Mater 25, 1561–1565 (2018). https://doi.org/10.1007/s10934-018-0569-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0569-4

Keywords

Navigation