Skip to main content
Log in

Tetraalkylammonium acetates and tetraalkylammonium tetrafluoroborates as new templates for room-temperature synthesis of mesoporous silica spheres

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Six surface active compounds containing: hexadecyltrimethylammonium [HDTMA], dodecyltrimethylammonium [DDTMA] or didecyldimethylammonium [DDA] cation and tetrafluoroborate [BF4] or acetate [OAc] anion were synthesized, purified and characterized, and subsequently applied for the synthesis of mesoporous silica materials of MCM-41 type. The materials were characterized using X-ray diffraction, Scanning Electron microscopy, and nitrogen physisorption method. Their structures were compared with that of reference MCM-41 material obtained with the conventional template [HDTMA][Br]. Nanosized silica spheres with size distribution in the range of 200–800 nm are obtained with the novel templates. The pore size of the obtained materials was in the range of 2.1–3.1 nm, and it was dependent only on the cation structure of the templates. The MCM-41 materials obtained with the acetate-based templates were characterized with a higher specific surface area in comparison with the reference material. On the basis of SEM, XRD and nitrogen physisorption data could be concluded that all tetraalkylammonium acetates used as templates lead to mesoporous silica nanospheres with very good textural characteristics, while in case of tetraalkylammonium tetrafluoroborates the best results in terms of particle uniformity and surface properties are obtained with [DDTMA][BF4]. MCM-41-[HDTMA][OAc] exhibited excellent loading capacity (374.1 mg/g) for the cyclic peptide antibiotic bacitracin, and moderate to good loading capacity for larger peptide and proteins such as insulin (70.3 mg/g) and lipase from porcine pancreas (70.8 mg/g).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. K.S.W. Sing,D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985)

    Article  CAS  Google Scholar 

  2. Y. Feng, N. Panwar, D.J.H. Tng, S.C. Tjin, K. Wang, K.-T. Yong, Coord. Chem. Rev. 319, 86 (2016)

    Article  CAS  Google Scholar 

  3. S. Zuo, X. Wang, P. Yang, C. Qi, Catal. Commun. 94, 52 (2017)

    Article  CAS  Google Scholar 

  4. K. Yoncheva, M. Popova, A. Szegedi, J. Mihaly, B. Tzankov, N. Lambov, S. Konstantinov, V. Tzankova, F. Pessina, M. Valoti, J. Solid State Chem. 211, 154 (2014)

    Article  CAS  Google Scholar 

  5. H.-J. Kim, H.-C. Yang, D.-Y. Chung, I.-H. Yang, Y.J. Choi, J.-K. Moon, J. Chem. 2015, 202867 (2015)

  6. A. Liberman, N. Mendez, W.C. Trogler, A.C. Kummel, Surf. Sci. Rep. 69(2–3), 132 (2014)

    Article  CAS  Google Scholar 

  7. Z. Zhou, M. Hartmann, Chem. Soc. Rev. 42, 3894 (2013)

    Article  CAS  Google Scholar 

  8. P. Kipkemboi, A. Fogden, V. Alfredsson, K. Flodström, Langmuir 17, 5398 (2001)

    Article  CAS  Google Scholar 

  9. N. Venkatathri, Mater. Sci. Eng. C 28, 1260 (2008)

    Article  CAS  Google Scholar 

  10. J.-Y. Zheng, J.-B. Pang, K.-Y. Qiu, Y. Wei, J. Inorgan. Organomet. Polym. 10(3), 103 (2000)

    Article  CAS  Google Scholar 

  11. N. Venkatathri, R. Srivastava, D.S. Yun, J.W. Yoo, Microporous Mesoporous Mater. 112, 147 (2008)

    Article  CAS  Google Scholar 

  12. C. Gerardin, J. Reboul, M. Bonne, B. Lebeau, Chem. Soc. Rev. 42, 4217 (2013)

    Article  CAS  Google Scholar 

  13. J.C. Vartuli, K.D. Schmitt, C.T. Kresge, W.J. Roth, M.E. Leonowicz, E.W. Sheppardt, S.B. McCullen, S.D. Hellring, J.S. Beck, J.L. Schlenker, D.H. Olson, E.W. Sheppard, Chem. Mater. 6, 2317 (1994)

    Article  CAS  Google Scholar 

  14. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C. T-. W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenkert, J. Am. Chem. Soc. 114, 10834 (1992)

    Article  CAS  Google Scholar 

  15. Q. Huo, R. Leon, P.M. Petroff, G.D. Stucky, Science 268, 1324 (1995)

    Article  CAS  Google Scholar 

  16. D. Zhao, Q. Huo, J. Feng, J. Kim, Y. Han, G.D. Stucky, Chem. Mater. 11, 2668 (1999)

    Article  CAS  Google Scholar 

  17. L. Han, S. Che, Chem. Soc. Rev 42, 3740 (2013)

    Article  CAS  Google Scholar 

  18. M. Antonietti, D. Kuang, B. Smarsly, Y. Zhou, Angew. Chem. Int. Ed. 43, 4988 (2004)

    Article  CAS  Google Scholar 

  19. A. Zukal, H. Siklova, J. Cejka, M. Thommes, Adsorption 13, 247 (2007)

    Article  CAS  Google Scholar 

  20. B. Trewyn, C.M. Whitman, V.S.-Y. Lin, Nano Lett. 4(11), 2139 (2004)

    Article  CAS  Google Scholar 

  21. T. Wang, H. Kaper, M. Antonietti, B. Smarsly, Langmuir 23, 1489 (2007)

    Article  CAS  Google Scholar 

  22. A. Zukal, M. Thommes, J. Cejka, Microporous Mesoporous Mater. 104, 52 (2007)

    Article  CAS  Google Scholar 

  23. Y.-J. Yu, J.-L. Xing, J.-L. Pang, S.-H. Jiang, K.-F. Lam, T.-Q. Yang, Q.-S. Xue, K. Zhang, P. Wu, ACS Appl. Mater. Interf. 6(24), 22655 (2014)

    Article  CAS  Google Scholar 

  24. A.K.L. Yuen, F. Heinroth, A.J. Ward, A.F. Masters, T. Maschmeyer, Microporous Mesoporous Mater. 148, 62 (2012)

    Article  CAS  Google Scholar 

  25. Y. Zhou, J.H. Schattka, M. Antonietti, Nano Lett. 4(3), 478 (2004)

    Article  Google Scholar 

  26. S. Dai, Y.H. Ju, H.J. Gao, J.S. Lin, S.J. Pennycook, C.E. Barnes, Chem. Commun. 243, 3 (2000)

  27. H. Sanaeishoar, M. Sabbaghan, F. Mohave, Microporous Mesoporous Mater. 217, 219 (2015)

    Article  CAS  Google Scholar 

  28. B. Tan, H.-J. Lehmler, S.M. Vyas, B.L. Knutson, S.E. Rankin, Chem. Mater. 17, 916 (2005)

    Article  CAS  Google Scholar 

  29. M. Grün, K. Unger, A. Matsumoto, K. Tsutsumi, Microporous Mesoporous Mater. 27(2–3), 207 (1999)

    Article  Google Scholar 

  30. H. Zhang, J. Wu, L. Zhou, D. Zhang, L. Qi, Langmuir 23(3), 1107 (2007)

    Article  CAS  Google Scholar 

  31. L.M. Pera, M.D. Baigori, A. Pandey, G.R. Castro, Industrial Biorefineries and White Biotechnology (Elsevier, Amsterdam, 2015) pp. 391–408

    Book  Google Scholar 

  32. E. Skorupska, A. Jeziorna, P. Paluch,. M.J. Potrzebowski, Mol. Pharm. 11, 1512 (2014)

    Article  CAS  Google Scholar 

  33. T. Heikkilä, J. Salonen, J. Tuura, N. Kumar, T. Salmi, D.Yu.. Murzin, M.S. Hamdy, G. Mul, L. Laitinen, A.M. Kaukonen, J. Hirvonen, V.-P. Lehto, Drug Deliv. 14, 337 (2007)

    Article  Google Scholar 

  34. N.V. Roik, L.A. Belyakova, M.O. Dziazko, Adsorpt. Sci. Technol. 35(1–2), 86 (2017)

    Article  CAS  Google Scholar 

  35. M. Kosmulski, in Chemical Properties of Material Surfaces, ed. by H. T. Arthur (Marcel Dekker, Inc., New York, 2001), pp. 65–293

    Chapter  Google Scholar 

  36. J. Kraineva, V. Smirnovas, R. Winter, Langmuir 23, 7118 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Nicola Zuccheto and Dr. Dominik Brühwiler form the Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Switzerland for the nitrogen physisorption and SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya Guncheva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 60 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guncheva, M., Dimitrov, M., Ossowicz, P. et al. Tetraalkylammonium acetates and tetraalkylammonium tetrafluoroborates as new templates for room-temperature synthesis of mesoporous silica spheres. J Porous Mater 25, 935–943 (2018). https://doi.org/10.1007/s10934-017-0505-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-017-0505-z

Keywords

Navigation