Skip to main content
Log in

Iron doped zeolitic imidazolate framework (Fe-ZIF-8): synthesis and photocatalytic degradation of RDB dye in Fe-ZIF-8

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

This paper presents a study on the synthesis of iron doped ZIF-8 with different molar ratio of Zn/Fe (Fe-ZIF-8) and sunlight driven photocatalytic activity of obtained materials. The materials were characteristic of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption/desorption isotherms, diffusive reflectance UV–Vis (DR-UV–Vis) and atomic absorption spectroscopy (AAS). The results showed that Fe(II) as iron source could be directly introduced into ZIF-8 to form Fe-ZIF-8. Depending on the amount of iron(II) introduced, the Fe(II) or both Fe(II) and Fe(III) may exist in ZIF-8. Fe-ZIF-8 was selected as photocatalyst to decompose Remazol deep black B (RDB), a model of dye contaminant, under sunlight illumination. Undoped ZIF-8 seems not to catalyze for degradation of RDB while Fe-ZIF-8 exhibited sunlight-driven photocatalytic degradation of RDB. The kinetics of photocatalytic reaction were also addressed. This study suggests iron doped zeolite-imidazole framework Fe-ZIF-8 to be promising catalyst for the heterogeneous photo-catalytic dye degradation technique in visible region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. Chang, D.S. Zhang, T.L. Hu, X.H. Bu, Synthesis, structure and properties of microporous metal–organic frameworks constructed from Ni(II)/Cd(II), Tpt and H4bpta. Inorg. Chem. Commun. 14(7), 1082–1085 (2011)

    Article  CAS  Google Scholar 

  2. S. Horike, M. Dinc, K. Tamaki, J.R. Long, Size-selective lewis acid catalysis in a microporous metal–organic framework with exposed Mn2+ coordination sites. J. Am. Chem. Soc. 130(18), 5854–5855 (2008)

    Article  CAS  Google Scholar 

  3. J.Y. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009)

    Article  CAS  Google Scholar 

  4. Y. Du, R.Z. Chen, J.F. Yao, H.T. Wang, Facile fabrication of porous ZnO by thermal treatment of zeolitic imidazolate framework-8 and its photocatalytic activity. J. Alloys Compd. 551, 125–130 (2013)

    Article  CAS  Google Scholar 

  5. H. Yang, X.-W. He, F. Wang, Y. Kang, J. Zhang, Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye. J. Mater. Chem. 22(41), 21849–21851 (2012)

    Article  CAS  Google Scholar 

  6. H.B. Wu, S. Wei, L. Zhang, R. Xu, H.H. Hng, X.W. Lou, Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium–sulfur batteries. Chemistry 19(33), 10804–10808 (2013)

    Article  CAS  Google Scholar 

  7. M. Zhua, D. Srinivas, S. Bhogeswararao, P. Ratnasamy, M.A. Carreon, Catalytic activity of ZIF-8 in the synthesis of styrene carbonate from CO2 and styrene oxide. Catal. Commun. 32(5), 36–40 (2013)

    Article  Google Scholar 

  8. X. Zhang, J. Jiang, Thermal conductivity of zeolitic imidazolate framework-8: a molecular simulation study. J. Phys. Chem. C 117(36), 18441–18447 (2013)

    Article  CAS  Google Scholar 

  9. F. Cacho-Bailo, B. Seoane, C. T´ellez, J. Coronas, J. Membr, ZIF-8 continuous membrane on porous polysulfone for hydrogen separation. J. Membr. Sci. 464(15), 119–126 (2014)

    Article  CAS  Google Scholar 

  10. K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. PNAS 103(27), 10186–10191 (2006)

    Article  CAS  Google Scholar 

  11. Z. Zou, S. Wang, J.J. FujianXu, Z. Long, X. Hou, Ultrasensitive determination of inorganic arsenic by hydride generation-atomic fluorescence spectrometry using Fe3O4@ZIF-8 nanoparticles for preconcentration. Microchem. J. 124, 578–583 (2016)

    Article  CAS  Google Scholar 

  12. X. Jiang, H.Y. Chen, L.L. Liu, L.G. Qiu, X. Jiang, Fe3O4 embedded ZIF-8 nanocrystals with ultra-high adsorption capacity towards hydroquinone. J. Alloys Compd. 646(15), 1075–1082 (2015)

    Article  CAS  Google Scholar 

  13. B. Civalleri, F. Napoli, Y. Noel, C. Roetti, R. Dovesi, Ab-initio prediction of materials properties with CRYSTAL: MOF-5 as a case study. CrystEngComm 8(5), 364–371 (2006)

    Article  CAS  Google Scholar 

  14. M. Alvaro, E. Carbonell, B. Ferrer, F. Xamena, H. Garcia, Semiconductor behavior of a metal–organic framework (MOF). Chemistry 13(18), 5106–5112 (2007)

    Article  CAS  Google Scholar 

  15. C.G. Silva, I. Luz, F.X. Llabrés, I. Xamena, A. Corma, H. García, Water stable Zr–benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation. Chemistry 16(38), 11133–11138 (2010)

    Article  CAS  Google Scholar 

  16. B. Yu, F. Wang, W. Dong, J. Hou, P. Lu, J. Gong, Self-template synthesis of core–shell ZnO@ZIF-8 nanospheres and the photocatalysis under UV irradiation. Mater. Lett. 156, 50–53 (2015)

    Article  CAS  Google Scholar 

  17. P.A. Soloman, C.A. Basha, M. Velan, V. Ramamurthi, K. Koteeswaran, N. Balasubramanian, Electrochem. Degrad. Remazol Black B Effluent Clean 37(11), 889–900 (2009)

    CAS  Google Scholar 

  18. N.F. Cardoso, R.B. Pinto, E.C. Lima, T. Calvete, C.V. Amavisca, B. Royer, M.L. Cunha, T.H.M. Fernandes, I.S. Pinto, Removal of remazol black B textile dye from aqueous solution by adsorption. Desalination 269(1–3), 92–103 (2011)

    Article  CAS  Google Scholar 

  19. V.P. Ranjusha, R. Pundir, K. Kumar, M.G. Dastidar, T.R. Sreekrishnan, Biosorption of remazol black B dye (Azo dye) by the growing Aspergillus flavus. J Environ Sci Health A 45(10), 1256–1263 (2010)

    Article  CAS  Google Scholar 

  20. H.-Y. Cho, J. Kim, S.-N. Kim, W.-S. Ahn, High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Microporous Mesoporous Mater. 169, 180–184 (2013)

    Article  CAS  Google Scholar 

  21. M. Zhu, S.R. Venna, J.B. Jasinski, M.A. Carreon, Room—temperature synthesis of ZIF-8: the coexistence of ZnO nanoneedles. Chem. Mater. 23(16), 3590–3592 (2011)

    Article  CAS  Google Scholar 

  22. S. Eslava, L. Zhang, S. Esconjauregui, J. Yang, K. Vanstreels, M.R. Baklanov, E. Saiz, Metal–organic framework ZIF-8 films as low-k dielectrics in microelectronic. Chem. Mater. 25(1), 27–33 (2013)

    Article  CAS  Google Scholar 

  23. O. Karagiaridi, M.B. Lalonde, W. Bury, A. Sarjeant, O.K. Farha, J.T. Hupp, Opening ZIF-8: a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers. J. Am. Chem. Soc. 134(45), 18790–18796 (2012)

    Article  CAS  Google Scholar 

  24. S. Suwanboon, P. Amornpitoksuk, Preparation and characterization of nanocrystalline La-doped ZnO powders through a mechanical milling and their optical properties. Ceram. Int. 37(8), 3515–3521 (2011)

    Article  CAS  Google Scholar 

  25. F. Wang, Z.S. Liu, H. Yang, Y.X. Tan, J. Zhang, building blocks. Angew. Chem. Int. Ed. 50(2), 450–453 (2011)

    Article  CAS  Google Scholar 

  26. H.-P. Jing, C.C. Wang, Y.-W. Zhang, P. Wang, R. Li, Photocatalytic degradation of methylene blue in ZIF-8. RSC Adv. 4, 544–554 (2014)

    Article  Google Scholar 

  27. J. Madhavan, P.S.S. Kumar, S. Anandan, M. Zhou, F. Grieser, M. Ashokkumar, Ultrasound assisted photocatalytic degradation of diclofenac in an aqueous environment. Chemosphere 80(7), 747–752 (2010)

    Article  CAS  Google Scholar 

  28. R. Chandra, S. Mukhopadhyay, M. Nath, TiO2@ZIF-8: a novel approach of modifying micro environment for enhanced photo-catalytic dye degradation and high usability of TiO2 nanoparticles. Mater. Lett. 164, 571–574 (2016)

    Article  CAS  Google Scholar 

  29. N.K. Lazaridis, T.D. Karapantsios, D. Georgantas, Kinetic analysis for the removal of a reactive dye from aqueous solution onto hydrotalcite by adsorption. Water Res. 37, 3023–3033 (2003)

    Article  CAS  Google Scholar 

  30. M. Al-Ghoutia, M.A.M. Khraisheh, M.N.M. Ahmad, S. Allen, Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: a kinetic study. J Colloid Interface Sci. 287(1), 6–13 (2005)

    Article  Google Scholar 

  31. M.A. Behnajady, N. Modirshahla, R. Hamzavi, Kinetic study on photocatalytic degradation of C.I. acid yellow 23 by ZnO photocatalyst. J. Hazard. Mat. 133(1–3), 226–232 (2006)

    Article  CAS  Google Scholar 

  32. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B 49(1), 1–14 (2004)

    Article  CAS  Google Scholar 

  33. C. Galindo, P. Jacques, A. Kalt, Photooxidation of the phenylazonaphthol AO20 on TlO2: kinetic and mechanistic investigations. Chemosphere. 45(6–7), 997–1005 (2001)

    Article  CAS  Google Scholar 

  34. M. Saquib, M. Muneer, TiO2-mediated photocatalytic degradation of a triphenylmethane dye(gentian violet) in aqueous suspensions. Dyes Pigments 56(1), 37–49 (2003)

    Article  CAS  Google Scholar 

  35. Y. Lai, M. Meng, Y. Yu, X. Wang, T. Ding, Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance. Appl. Catal. B 105(3–4), 335–345 (2011)

    Article  CAS  Google Scholar 

  36. U.G. Akpanab, B.H. Hameeda, Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid by Ca–Ce–W–TiO2 composite photocatalyst. Chem Eng J 173(2), 369–375 (2011)

    Article  Google Scholar 

  37. J. Saien, S. Khezrianjoo, Degradation of the fungicide carbendazim in aqueous solutions withUV/TiO2 process: optimization, kinetics and toxicity studies. J. Hazard. Mat. 157, 269–276 (2008)

    Article  CAS  Google Scholar 

  38. M.T. Thanh, T.V. Thien, V.T.T. Chau, P.D. Du, N.P. Hung, D.Q. Khieu, Synthesis of iron doped zeolite imidazolate framework-8 and its remazol deep black RGB dye adsorption ability. J. Chem. (2017)

  39. A. Belhadi, S. Boumaza, M. Trari, Photoassisted hydrogen production under visible light over NiO/ZnO hetero-system. Appl. Energy 88(12), 4490–4495 (2011)

    Article  CAS  Google Scholar 

  40. H.K. Bowen, D. Adler, B.H. Auker, Electrical and optical properties of FeO. J. Solid State Chem. 12(3–4), 355–359 (1975)

    Article  CAS  Google Scholar 

  41. X. Liu, A. Jin, Y. Jia, J. Jiang, N. Hu, X. Chen, Facile synthesis and enhanced visible-light photocatalytic activity of graphitic carbon nitride decorated with ultrafine Fe2O3 nanoparticles. RSC Adv. 5, 92033–92041 (2015)

    Article  CAS  Google Scholar 

  42. W. Wu, C. Jiang, V.A.L. Roy, Recent progress in magnetic iron oxide–semiconductor composite nanomaterials as promising photocatalysts. Nanoscale 7, 38–58 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the project B2016-DHH-20 sponsored by Ministry of Education and Training, Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh Quang Khieu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thanh, M.T., Thien, T.V., Du, P.D. et al. Iron doped zeolitic imidazolate framework (Fe-ZIF-8): synthesis and photocatalytic degradation of RDB dye in Fe-ZIF-8. J Porous Mater 25, 857–869 (2018). https://doi.org/10.1007/s10934-017-0498-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-017-0498-7

Keywords

Navigation