Skip to main content
Log in

Diatom frustules as a biomaterial: effects of chemical treatment on organic material removal and mechanical properties in cleaned frustules from two Coscinodiscus species

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The three-dimensional structure of silica diatom frustules offers a great potential as nanoporous material for several nanotechnological applications, but the starting point for these applications is the ability to obtain clean frustules with sufficient mechanical strength and intact structure. Here, frustules from the diatoms Coscinodiscus centralis Ehrenberg and Coscinodiscus wailesii Gran et Angst are characterized with respect to their structural integrity, content of residual organic biomaterial and their mechanical properties after two cleaning methods using either hydrogen peroxide as oxidizing agent or a combination of a surfactant (sodium dodecyl sulphate) and a complexing agent. Fluorescence microscopy and energy dispersive spectroscopy (SEM/EDS) analysis revealed clear differences regarding the amount of organic residual within the frustules depending on the cleaning process, with little organic material left after the oxidizing method. This method, however, induced a partial cracking of the frustules suggesting an embrittlement due to the cleaning. Nanoindentation confirmed this and showed that the oxidizing method resulted in more brittle frustules compared to the surfactant/complexing method. More efficient cleaning of organic biomaterial may result in more fragile frustules, and the choice of cleaning method must be based on the planned application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. W. Yang, P.J. Lopez, G. Rosengarten, Analyst 136, 42–53 (2011)

    Article  CAS  Google Scholar 

  2. R. Gordon, D. Losic, M.A. Tiffany, S.S. Nagy, F.A. Sterrenburg, Trends Biotechnol. 27, 116–127 (2009)

    Article  CAS  Google Scholar 

  3. N. Nassif, J. Livage, Chem. Soc. Rev. 40, 849–859 (2011)

    Article  CAS  Google Scholar 

  4. D. Losic, Y. Yu, M.S. Aw, S. Simovic, B. Thierry, J. Addai-Mensah, Chem. Commun. 46, 6323–6325 (2010)

    Article  CAS  Google Scholar 

  5. D. Losic, G. Rosengarten, J.G. Mitchell, N.H. Voelcker, J. Nanosci. Nanotechnol. 6, 982–989 (2006)

    Article  CAS  Google Scholar 

  6. M.S. Aw, S. Simovic, Y. Yu, J. Addai-Mensah, D. Losic, Powder Technol. 223, 52–58 (2012)

    Article  CAS  Google Scholar 

  7. P. Gnanamoorthy, S. Anandhan, V.A. Prabu, J. Porous Mater. 21, 789–796 (2014)

    Article  CAS  Google Scholar 

  8. R.B. Vasani, D. Losic, A. Cavallaro, N.H. Voelcker et al., J. Mater. Chem. B 3, 4325–4329 (2015)

    Article  CAS  Google Scholar 

  9. G.W. Lim, J.K. Lim, A.L. Ahmad, D.J.C. Chan, J. Appl. Phycol. 27, 763–775 (2015)

    Article  CAS  Google Scholar 

  10. E. Van Eynde, T. Tytgat, M. Smits, S.W. Verbruggen, B. Hauchecorne, S. Lenaerts, Photochem. Photobiol. Sci. 12, 690–695 (2013)

    Article  Google Scholar 

  11. M.P. Andrews, A. Hajiaboli, J. Hiltz, T. Gonzalez, G. Singh, R.B. Lennox, in Proceedings of SPIE 7946. Photonic and Phononic Properties of Engineered Nanostructures, vol. 7946, pp. 7946S1–7946S12 (2011)

  12. L. De Stefano, L. Rotiroti, M. De Stefano, A. Lamberti, S. Lettieri, A. Setaro, P. Maddalena, Biosens. Bioelectron. 24, 1580–1584 (2009)

    Article  Google Scholar 

  13. E. De Tommasi, I. Rea, V. Mocella, L. Moretti, M. De Stefano, I. Rendina, L. De Stefano, Opt. Express 18, 12203–12212 (2010)

    Article  Google Scholar 

  14. M.A. Ferrara, P. Dardano, L. De Stefano, I. Rea, G. Coppola, I. Rendina, R. Congestri, A. Antonucci, M. De Stefano, E. De Tommasi, Plos One 9, e103750 (2014)

    Article  Google Scholar 

  15. J. Romann, J.C. Valmalette, A. Royset, M.A. Einarsrud, Opt. Lett. 40, 740–743 (2015)

    Article  CAS  Google Scholar 

  16. K. Kieu, C. Li, Y. Fang, G. Cohoon, O.D. Herrera, M. Hildebrand, K.H. Sandhage, R.A. Norwood, Opt. Express 22, 15992–15999 (2014)

    Article  CAS  Google Scholar 

  17. G.A. Cohoon, C.E. Alvarez, K. Meyers, D.D. Deheyn, M. Hildebrand, K. Kieu, R.A. Norwood, in Proceedings of SPIE 9341. Bioinspired, Biointegrated, Bioengineered Photonic Devices III, ed. by L.P. Lee, J.A. Rogers, S.H.A. Yun, vol. 9341 (2015)

  18. K.M. Wee, T.N. Rogers, B.S. Altan, S.A. Hackney, C. Hamm, J. Nanosci. Nanotechnol. 5, 88–91 (2005)

    Article  CAS  Google Scholar 

  19. N. Kroger, N. Poulsen, Annu. Rev. Genet. 42, 83–107 (2008)

    Article  CAS  Google Scholar 

  20. N. Kroger, R. Deutzmann, C. Bergsdorf, M. Sumper, Proc. Natl. Acad. Sci. USA 97, 14133–14138 (2000)

    Article  CAS  Google Scholar 

  21. A.E. Ingalls, K. Whitehead, M.C. Bridoux, Geochim. Cosmochim. Acta 74, 104–115 (2010)

    Article  CAS  Google Scholar 

  22. M. Sumper, N. Kroger, J. Mater. Chem. 14, 2059–2065 (2004)

    Article  CAS  Google Scholar 

  23. E. Brunner, H. Ehrlich, P. Schupp, R. Hedrich, S. Hunoldt, M. Kammer, S. Machill, S. Paasch, V.V. Bazhenov, D.V. Kurek, T. Arnold, S. Brockmann, M. Ruhnow, R. Born, J. Struct. Biol. 168, 539–547 (2009)

    Article  CAS  Google Scholar 

  24. B. Tesson and M. Hildebrand, PloS one, 8 (2013)

  25. M. Sumper, Science 295, 2430–2433 (2002)

    Article  CAS  Google Scholar 

  26. J. Toster, K.S. Iyer, W. Xiang, F. Rosei, L. Spiccia, C.L. Raston, Nanoscale 5, 873–876 (2013)

    Article  CAS  Google Scholar 

  27. J. O’Connor, Y. Lang, J.H. Chao, H.L. Cao, L. Collins, B.J. Rodriguez, P. Dockery, D.P. Finn, W.X. Wang, A. Pandit, Small 10, 469–473 (2014)

    Article  Google Scholar 

  28. E. Gultur, M. Guden, J. Achiev. Mater. Manuf. Eng. 46, 196–203 (2011)

    Google Scholar 

  29. S. Blanco, I. Alvarez, C. Cejudo, J. Appl. Phycol. 20, 445–450 (2008)

    Article  Google Scholar 

  30. S. Vermeulen, G. Lepoint, S. Gobert, J. Appl. Phycol. 24, 1253–1260 (2012)

    Article  Google Scholar 

  31. L. Friedrichs, Diatom Res. 28, 317–327 (2013)

    Article  Google Scholar 

  32. L.V. Morales, D.M. Sigman, M.G. Horn, R.S. Robinson, Limnol. Oceanogr. Methods 11, 101–112 (2013)

    Article  CAS  Google Scholar 

  33. E. Van Eynde, T. Tytgat, M. Smits, S.W. Verbruggen, B. Hauchecorne, S. Lenaerts, Photochem. Photobiol. Sci. 12, 690–695 (2013)

    Article  Google Scholar 

  34. B. Tesson, S. Masse, G. Laurent, J. Maquet, J. Livage, V. Martin-Jezequel, T. Coradin, Anal. Bioanal. Chem. 390, 1889–1898 (2008)

    Article  CAS  Google Scholar 

  35. R.R.L. Guillard, Culture of phytoplankton for feeding marine invertebrates, in Culture of Marine Invertebrate Animals, ed. by W.L. Smith, M.H. Chanley (Plenum Press, New York, 1975), pp. 26–60

    Google Scholar 

  36. Y.Z. Tang, F.C. Dobbs, Appl. Environ. Microbiol. 73, 2306–2313 (2007)

    Article  CAS  Google Scholar 

  37. D.M.M. Kleinegris, M.A. van Es, M. Janssen, W.A. Brandenburg, R.H. Wijffels, J. Appl. Phycol. 22, 645–649 (2010)

    Article  CAS  Google Scholar 

  38. J. Michels, M. Büntzow, J. Microsc. 238, 95–101 (2010)

    Article  CAS  Google Scholar 

  39. K. Spinde, M. Kammer, K. Freyer, H. Ehrlich, J.N. Vournakis, E. Brunner, Chem. Mater. 23, 2973–2978 (2011)

    Article  CAS  Google Scholar 

  40. C.A. Durkin, T. Mock, E.V. Armbrust, Eukaryot. Cell 8, 1038–1050 (2009)

    Article  CAS  Google Scholar 

  41. C.J. Lorenzen, Limnol. Oceanogr. 12, 343–346 (1967)

    Article  CAS  Google Scholar 

  42. E. Nagababu, F.J. Chrest, J.M. Rifkind, Free Radic Biol. Med. 29(7), 659–663 (2000)

    Article  CAS  Google Scholar 

  43. V.V. Dasu, Y. Nakada, M. Ohnishi-Kameyama, K. Kimura, Y. Itoh, Microbiology 152, 2265–2272 (2006)

    Article  CAS  Google Scholar 

  44. N. Kröger, C. Bergsdorf, M. Sumper, EMBO J. 13, 4676–4683 (1994)

    Google Scholar 

  45. M. Suroy, B. Moriceau, J. Boutorh, M. Goutx, Deep Sea Res. Part I Oceanogr. Res. Pap. 86, 21–31 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Research Council of Norway is acknowledged for financial support through the SOLBIOPTA Project (Contract #10358700). Egil S. Erichsen, Laboratory for Electron Microscopy, University of Bergen is acknowledged for his help in SEM/EDS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari-Ann Einarsrud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romann, J., Chauton, M.S., Hanetho, S.M. et al. Diatom frustules as a biomaterial: effects of chemical treatment on organic material removal and mechanical properties in cleaned frustules from two Coscinodiscus species. J Porous Mater 23, 905–910 (2016). https://doi.org/10.1007/s10934-016-0147-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0147-6

Keywords

Navigation