Skip to main content
Log in

Contribution of multi-nuclear solid state NMR to the characterization of the Thalassiosira pseudonana diatom cell wall

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A major issue in the study of biosilicification processes is the harsh chemical conditions required for silica dissolution, which often lead to denaturation of the associated bio-organic matter. In order to demonstrate the potential of solid state NMR for investigating silicified materials of natural origin, this technique was applied to isotopically enriched Thalassiosira pseudonana diatom cells. 29Si, 1H,31P, 13C and 15N solid state NMR studies were performed on whole cells, SDS-extracted and H2O2-cleaned silica shells. Cross-polarization techniques were useful for identifying the presence of mobile and rigid molecules, allowing loosely bound and silica-entrapped species to be discriminated. Successive cleaning procedures efficiently eliminated weakly associated organic matter. The H2O2-cleaned silica shell still contained carbohydrates (mainly chitin) and proteins as well as lipids. This suggests that the role of lipids in diatom shell formation may have been underestimated so far, demonstrating the potential of solid state NMR for studying composite biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Volcani BE (1981) In: Simpson TL, Volcani BE (eds) Silicon and siliceous structure in biological systems. Springer, Berlin, pp 157–200

  2. Coradin T, Lopez PJ (2003) ChemBioChem 4:251–259

    Article  CAS  Google Scholar 

  3. Martin-Jézéquel V, Hildebrand M, Brzezinski MA (2000) J Phycol 36:821–840

    Article  Google Scholar 

  4. Martin-Jézéquel V, Lopez PJ (2003) In: Silicon biomineralization: biology, biochemistry, biotechnology (Progress in molecular and subcellular biology). Springer, Berlin, pp 99–124

  5. Crawford SA, Higgins MJ, Mulvaney P, Wetherbee R (2001) J Phycol 37:543–554

    Article  Google Scholar 

  6. Noll F, Sumper M, Hampp N (2002) Nano Lett 2:91–95

    Article  CAS  Google Scholar 

  7. Hildebrand M, York E, Kelz JI, Davis AK, Frigeri LG, Allison DP, Doktycz MJ (2006) J Mater Res 21:2689–2698

    Article  CAS  Google Scholar 

  8. Hecky RE, Mopper K, Kilham P, Degens ET (1973) Mar Biol 19:323

    Article  CAS  Google Scholar 

  9. Swift DM, Wheeler AP (1992) J Phycol 28:202–209

    Article  CAS  Google Scholar 

  10. Kroger N, Deutzmann R, Sumper M (1999) Science 286:1129–1132

    Article  CAS  Google Scholar 

  11. Kroger N, Deutzmann R, Bergsdorf C, Sumper M (2000) Proc Natl Acad Sci USA 97:14133–14138

    Article  CAS  Google Scholar 

  12. Sumper M (2002) Science 295:2430–2433

    Article  CAS  Google Scholar 

  13. Poulsen N, Kroger N (2004) J Biol Chem 279:42993–42999

    Article  CAS  Google Scholar 

  14. Lutz K, Gröger C, Sumper M, Brunner E (2005) Phys Chem Chem Phys 7:2812–2815

    Article  CAS  Google Scholar 

  15. Rogerson A, deFreitas ASW, McInnes AG (1986) Can J Microbiol 33:128–131

    Article  Google Scholar 

  16. Sumper M, Brunner E (2006) Adv Funct Mater 16:17–26

    Article  CAS  Google Scholar 

  17. Kroger N, Lorenz S, Brunner E, Sumper M (2002) Science 298:584–586

    Article  CAS  Google Scholar 

  18. Sumper M, Lorenz S, Brunner E (2003) Angew Chem Int Ed 42:5192–5195

    Article  CAS  Google Scholar 

  19. Bonhomme C, Coelho C, Baccile N, Gervais C, Azaïs T, Babonneau F (2007) Acc Chem Res 40:738–746

    Article  CAS  Google Scholar 

  20. Yannoni CS (1982) Acc Chem Res 15:201–208

    Article  CAS  Google Scholar 

  21. Mann S, Perry CC, Williams RJP, Fyfe CA, Gobbi GC, Kennedy GJ (1983) Chem Commun 168–170

  22. Bertermann R, Kroger N, Tacke R (2003) Anal Bioanal Chem 375:630–634

    CAS  Google Scholar 

  23. Gendron-Badou A, Coradin T, Maquet J, Frohlich F, Livage J (2003) J Non-Cryst Solids 316:331–337

    Article  CAS  Google Scholar 

  24. Gröger C, Sumper M, Brunner E (2007) J Struct Biol DOI 10.1016/j.jsb.2007.09.010

  25. Christiansen SC, Hedin N, Epping JD, Janicke MT, del Amo Y, Demarest M, Brzezinski M, Chmelka BF (2006) Solid State Nucl Magn Reson 29:170–182

    Article  CAS  Google Scholar 

  26. Brunner E, Lutz K (2007) In: Behrens P, Baueurlein E (eds) Handbook of biomineralization. Wiley-VCH, Weinheim, pp 19–38

  27. Chauton MS, Storseth TR, Krane J (2004) J Phycol 40:611–618

    Article  CAS  Google Scholar 

  28. Storseth TR, Hansen K, Skjermo J, Krane J (2004) Carbohyd Res 339:421–424

    Article  CAS  Google Scholar 

  29. Guillard RRL, Ryther JH (1962) Can J Microbiol 8:229–239

    Article  CAS  Google Scholar 

  30. Robinson RS, Brunelle BG, Sigman, DM (2004) Paleoceanography 19 (PA3001) DOI 10.1029/2003PA000996

  31. Bennett A, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) J Chem Phys 103:6951–6958

    Article  CAS  Google Scholar 

  32. Massiot D, Fayon F, Capron M, King I, Le Clavé S, Alonso B, Durand JO, Bujoli B, Gan Z, Hoatson G (2002) Magn Reson Chem 40:70–76

    Article  CAS  Google Scholar 

  33. Ingall ED, Schroeder PA, Berner RA (1990) Geochim Cosmochim Acta 54:2617–2620

    Article  CAS  Google Scholar 

  34. Boyd RK, DeFreitas AS, Hoyle J, McCulloch AW, McInnes AG, Rogerson A, Walter JA (1987) J Biol Chem 262:12406–12408

    CAS  Google Scholar 

  35. Fan TWM (1996) Prog Nucl Magn Reson Spectrosc 28:161–219

    CAS  Google Scholar 

  36. Knicker H (2004) Mar Chem 92:167–195

    Article  CAS  Google Scholar 

  37. Kolodziejski W, Klinowski J (2002) Chem Rev 102:613–628

    Article  CAS  Google Scholar 

  38. Reinheimer P, Hirschinger J, Gilard P, Goetz N (1997) Magn Reson Chem 35:757–764

    Article  CAS  Google Scholar 

  39. Tanner SF, Chanzy H, Vincendon M, Roux JC, Gaill F (1990) Macromolecules 23:3576–3583

    Article  CAS  Google Scholar 

  40. Terskikh VV, Feurtado JA, Borchardt S, Giblin M, Abrams SR, Kermode AR (2005) J Exp Bot 56:2253–2265

    Article  CAS  Google Scholar 

  41. Fauconnot L, Robert F, Villard R, Dionisi F (2006) Chem Phys Lipids 139:125–136

    Article  CAS  Google Scholar 

  42. Pickett-Heaps JD, Schmid AMM, Edgar LA (1990) In: Round FE, Chapmann T (eds) Progress in phycological research, vol 7. Biopress Ltd., Bristol, UK

  43. Hildebrand M, Wetherbee R (2003) Progress in molecular and subcellular biology. Springer, Berlin, pp 11–57

  44. Round FE, Crawford RM, Mann DG (1990) The diatoms. Cambridge University Press, Cambridge

    Google Scholar 

  45. Ford CW, Percival E (1965) J Chem Soc 7035–7041

  46. Ford CW, Percival E (1965) J Chem Soc 7042–7046

  47. Percival E, Rahman MA, Weigel H (1980) Phytochem 19:809–811

    Article  CAS  Google Scholar 

  48. Chiovitti A, Harper RE, Willis A, Bacic A, Mulvaney P, Wetherbee R (2005) J Phycol 41:1154–1161

    Article  CAS  Google Scholar 

  49. McConville MJ, Wetherbee R, Bacic A (1999) Protoplasma 206:188–200

    Article  CAS  Google Scholar 

  50. Chiovitti A, Higgins MJ, Harper RE, Wetherbee R (2003) J Phycol 39:543–554

    Article  CAS  Google Scholar 

  51. El-Rassy H, Belamie E, Livage J, Coradin T (2005) Langmuir 21:8584–8587

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Dr Thierry Azaïs (CMCP) for fruitful discussions. B. Tesson and V. Martin-Jézéquel are funded by the Region Pays de Loire, the University of Nantes, the Centre National de la Recherche Scientifique (CNRS) and the EC Sixth Framework Programme “Diatomics” (LSHG-CT-2004-512035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibaud Coradin.

Electronic supplementary material

A list of 13C MAS NMR resonance chemical shifts and proposed attributions for the H2O2-cleaned T. pseudonana sample is provided in Table S1.

ESM 1

(PDF 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tesson, B., Masse, S., Laurent, G. et al. Contribution of multi-nuclear solid state NMR to the characterization of the Thalassiosira pseudonana diatom cell wall. Anal Bioanal Chem 390, 1889–1898 (2008). https://doi.org/10.1007/s00216-008-1908-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-1908-0

Keywords

Navigation