Skip to main content

Advertisement

Log in

A multi-proxy paleoenvironmental interpretation spanning the last glacial cycle (ca. 117 ± 8.5 ka BP) from a lake sediment stratigraphy from Lake Kai Iwi, Northland, New Zealand

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

A 9.3-m-long lake sediment core from dune-impounded Lake Kai Iwi in Northland, New Zealand provides a nearly continuous record of environmental changes from multi-proxy organic, physical index, and µ-XRF elemental data sets. The chronology for the upper 3 m of the core was established by 210Pb, 14C and tephrochronology and includes Marine Isotope Stage (MIS) 1 (Holocene), MIS 2 and late MIS 3. From this well-dated section of the core stratigraphy we were able to infer the environmental proxies that respond to wind and/or precipitation during cool periods (MIS 2 and 4) and with the warm periods (MIS 1 and 5). Principal component analysis (PCA) and cluster analysis were performed on the µ-XRF elemental data set including elements common in lake sediments (P, S, Fe, Ti, K, Ca, and Si) and five ratios (Sr/Ca, Br/Cl, Mn/Fe, Ti/K, and Inc/coh) to identify patterns in the µ-XRF proxy data associated with environmental change manifesting as changes in precipitation and wind deposition. The PCA indicates that Component (PC)-1 represents detrital versus organic deposition, and PC-2 is associated with nutrient influx versus anoxic conditions in the lake. The cool periods of MIS 2 and 4 are apparent in the µ-XRF data as having increased detrital influx in the form of Sr/Ca from marine derived sediments from the exposed continental shelf during low sea level indicating cool and dry conditions. Warmer and wetter periods (MIS 1 and 5) are identified by increased Ti/K influx from precipitation runoff and increased organic productivity as shown by Inc/coh and total organic carbon. The Holocene warm equivalent conditions of MIS 5e are not represented in the lower part of the Lake Kai Iwi core stratigraphy consistent with an extrapolated basal age of 117 ± 8.5 ka BP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgements

The authors would like to thank AINSE Ltd for providing financial assistance (Award—PGRA 11784) to enable work on this Project. We would like to thank the field crew at the University of Auckland for help with logistics and coring, and we would also like to thank the lab technicians at the University of Auckland and ANSTO for providing their expertise and advice for this Project. The authors would like to thank Dr. Claire Kain for use of her computer scripts for PCA and cluster analysis on the R platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianna Evans.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, G., Augustinus, P., Gadd, P. et al. A multi-proxy paleoenvironmental interpretation spanning the last glacial cycle (ca. 117 ± 8.5 ka BP) from a lake sediment stratigraphy from Lake Kai Iwi, Northland, New Zealand. J Paleolimnol 65, 101–122 (2021). https://doi.org/10.1007/s10933-020-00151-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-020-00151-z

Keywords

Navigation