Skip to main content
Log in

Environmental changes in northern New Zealand since the Middle Holocene inferred from stable isotope records (δ15N, δ13C) of Lake Pupuke

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Maar lakes in the Auckland Volcanic Field are important high-resolution archives of Holocene environmental change in the Southern Hemisphere mid-latitudes. Stable carbon and nitrogen isotope analyses were applied on bulk organic matter and the green alga Botryococcus from a sediment core from Lake Pupuke (Auckland, North Island, New Zealand) spanning the period since 7,165 cal. year BP. The origin of organic matter was established using total-organic–carbon-to-nitrogen ratios (TOC/TN) as well as organic carbon (δ13COM) and nitrogen (δ15N) isotope composition of potential modern sources. This approach demonstrated that the contribution of allochthonous organic matter to the lake sediment was negligible for most of the record. The sedimentary TOC/TN ratios that are higher than Redfield ratio (i.e. >7) are attributed to N-limiting conditions throughout the record. Variations of nitrogen and carbon isotopes during the last 7,165 years are interpreted as changes in the dominant processes in the lake. While epilimnetic primary productivity controlled isotope composition before 6,600 cal. year BP, microbial processes, especially denitrification and methane oxidation, caused overall shifts of the δ15N and δ13C values since the Mid-Holocene. Comparisons with climate reconstructions from the Northern Island suggest that changes in the wind-induced lake overturn and a shift to more pronounced seasonality were the most likely causes for lake-internal changes since 6,600 cal. year BP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alloway BV, Lowe DJ, Barrell DJA, Newnham RM, Almond PC, Augustinus PC, Bertler NAN, Carter L, Litchfield NJ, McGlone MS, Shulmeister J, Vandergoes MJ, Williams PW (2007) Towards a climate event stratigraphy for New Zealand over the past 30,000 years (NZ-INTIMATE project). J Quat Sci 22:9–35

    Article  Google Scholar 

  • Anderson LA (1995) On the hydrogen and oxygen content of marine phytoplankton. Deep Sea Res Part I Oceanogr Res Pap 42:1675–1680

    Article  Google Scholar 

  • Augustinus P, Reid M, Andersson S, Deng Y, Horrocks M (2006) Biological and geochemical record of anthropogenic impacts in recent sediments from Lake Pupuke, Auckland City, New Zealand. J Paleolimnol 35:789–805

    Article  Google Scholar 

  • Augustinus P, Bleakley N, Deng Y, Shane P, Cochran U (2008) Rapid change in early Holocene environments inferred from Lake Pupuke. Auckland City, N Z. J Q Sci 23:435–447

    Article  Google Scholar 

  • Bahlmann E, Bernasconi SM, Bouillon S, Houtekamer M, Korntheuer M, Langenberg F, Mayr C, Metzke M, Middelburg JJ, Nagel B, Struck U, Voß M, Emeis K-C (2009) Performance evaluation of nitrogen isotope ratio determination in marine and lacustrine sediments: An inter-laboratory comparison. Org Geochem 41:3–12

    Article  Google Scholar 

  • Barker MA (1970) Physio-chemical features of Lake Pupuke, Auckland. N Z J Mar Fresh Res 4:406–430

    Article  Google Scholar 

  • Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10:297–317

    Article  Google Scholar 

  • Brenner M, Whitmore TJ, Curtis JH, Hodell DA, Schelske CL (1999) Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. J Paleolimnol 22:205–221

    Article  Google Scholar 

  • Brüchmann C, Negendank JFW (2004) Indication of climatically induced natural eutrophication during the early Holocene period, based on annually laminated sediment from Lake Holzmaar, Germany. Quat Int 123–125:117–134

    Article  Google Scholar 

  • Brugnoli E, Farquhar GD (2000) Photosynthetic fractionation of carbon isotopes. In: Leegood RC, Sharkey TD, Von Caemmerer S (eds) Photosynthesis: physiology and metabolism. Kluwer, Dordrecht, pp 399–434

    Google Scholar 

  • Cassie V (1989) Micro-algae of Lake Pupuke, Auckland, New Zealand. N Z Nat Sci 16:39–50

    Google Scholar 

  • Coffey BT, Clayton JS (1987) Submerged macrophytes of Lake Pupuke, Takapuna, New Zealand. N Z J Mar Freshw Res 21:193–198

    Article  Google Scholar 

  • DeNiro M, Epstein S (1977) Mechanism of carbon isotope fractionation associated with lipid-synthesis. Science 197:261–263

    Article  Google Scholar 

  • Eden DN, Page MJ (1998) Palaeoclimatic implications of a storm erosion record from late Holocene lake sediments, North Island, New Zealand. Palaeogeogr Palaeoclimatol Palaeoecol 139:37–58

    Article  Google Scholar 

  • Finlay JC, Kendall C (2007) Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell, Oxford, pp 283–333

    Chapter  Google Scholar 

  • Gehrels MJ, Lowe DJ, Hazell ZJ, Newnham RM (2006) A continuous 5300-yr Holocene cryptotephrostratigraphic record from northern New Zealand and implications for tephrochronology and volcanic hazard assessment. Holocene 16:173–187

    Article  Google Scholar 

  • Guy-Ohlson D (1992) Botryococcus as an aid in the interpretation of palaeoenvironment and depositional processes. Rev Palaeobot Palynol 71:1–15

    Article  Google Scholar 

  • Hall CM, York D (1984) The applicability of 40Ar/39Ar dating to young volcanics. In: Mahaney WC (ed) Quaternary dating methods. Elsevier, New York, pp 67–74

    Chapter  Google Scholar 

  • Hecky RE, Campbell P, Hendzel LL (1993) The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol Oceanogr 38:709–724

    Article  Google Scholar 

  • Hedges JI, Baldock JA, Gélinas Y, Lee C, Peterson ML, Wakeham SG (2002) The biochemical and elemental compositions of marine plankton: a NMR perspective. Mar Chem 78:47–63

    Article  Google Scholar 

  • Hollander DJ, McKenzie JA (1991) CO2 control on carbon-isotope fractionation during aqueous photosynthesis: a paleo-pCO2 barometer. Geology 19:929–932

    Article  Google Scholar 

  • Hollander DJ, Smith MA (2001) Microbially mediated carbon cycling as a control on the δ13C of sedimentary carbon in eutrophic Lake Mendota (USA): new models for interpreting isotopic excursions in the sedimentary record. Geochim Cosmochim Acta 65:4321–4337

    Article  Google Scholar 

  • Horrocks M, Augustinus P, Deng Y, Shane P, Andersson S (2005) Holocene vegetation, environment and tephra recorded from Lake Pupuke, Auckland, New Zealand. N Z J Geol Geophys 48:85–94

    Article  Google Scholar 

  • Hua Q, Barbetti M (2004) Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes. Radiocarbon 46:1273–1298

    Google Scholar 

  • Huang Y, Street-Perrott FA, Perrott RA, Metzger P, Eglinton G (1999) Glacial-interglacial environmental changes inferred from molecular and compound-specific δ13C analyses of sediments from Sacred Lake, Mt. Kenya. Geochim Cosmochim Acta 63:1383–1404

    Article  Google Scholar 

  • Hupfer M, Lewandowski J (2008) Oxygen controls the phosphorus release from lake sediments—along lasting paradigm in limnology. Int Rev Hydrobiol 93:415–432

    Article  Google Scholar 

  • Keeley JE, Sandquist DR (1992) Carbon: freshwater plants. Plant Cell Environ 15:1021–1035

    Article  Google Scholar 

  • Kermode LO (1992) Geology of the Auckland urban area, 1:50,000. Institute of Geological and Nuclear Sciences, Lower Hutt

    Google Scholar 

  • Leavitt PR, Brock CS, Ebel C, Patoine A (2006) Landscape-scale effects of urban nitrogen on a chain of freshwater lakes in central North America. Limnol Oceanogr 51:2262–2277

    Article  Google Scholar 

  • Lehmann MF, Bernasconi SM, McKenzie JA, Barbieri A, Simona M, Veronesi M (2004) Seasonal variation of the δ13C and δ15N of particulate and dissolved carbon and nitrogen in Lake Lugano: constraints on biogeochemical cycling in a eutrophic lake. Limnol Oceanogr 49:415–429

    Article  Google Scholar 

  • Lowe DJ, Shane PAR, Alloway BV, Newnham RM (2008) Fingerprints and age models for widespread New Zealand tephra marker beds erupted since 30,000 years ago: a framework for NZ-INTIMATE. Quat Sci Rev 27:95–126

    Article  Google Scholar 

  • Lücke A, Brauer A (2004) Biogeochemical and micro-facial fingerprints of ecosystem response to rapid Late Glacial climatic changes in varved sediments of Meerfelder Maar (Germany). Palaeogeogr Palaeoclimatol Palaeoecol 211:139–155

    Google Scholar 

  • Maberly SC, Raven JA, Johnston AM (1992) Discrimination between 12C and 13C by marine plants. Oecologia 91:481–492

    Article  Google Scholar 

  • Macko SA, Fogel ML, Hare PE, Hoering TC (1987) Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Chem Geol 65:79–92

    Article  Google Scholar 

  • Maxwell JR, Douglas AG, Eglinton G, McCormicks A (1968) The botryococcenes-hydrocarbons of novel structure from the alga Botryococcus braunii, Kützing. Phytochemistry 7:2157–2171

    Article  Google Scholar 

  • Mayr C, Fey M, Haberzettl T, Janssen S, Lücke A, Maidana NI, Ohlendorf C, Schäbitz F, Schleser GH, Struck U, Wille M, Zolitschka B (2005) Palaeoenvironmental changes in southern Patagonia during the last millennium recorded in lake sediments from Laguna Azul (Argentina). Palaeogeogr Palaeoclimatol Palaeoecol 228:203–227

    Article  Google Scholar 

  • Mayr C, Lücke A, Maidana NI, Wille M, Haberzettl T, Corbella H, Ohlendorf C, Schäbitz F, Fey M, Janssen S, Zolitschka B (2009) Isotopic fingerprints on lacustrine organic matter from Laguna Potrok Aike (southern Patagonia, Argentina) reflect environmental changes during the last 16,000 years. J Paleolimnol 42:81–102

    Article  Google Scholar 

  • McKenzie JA (1985) Carbon isotope and productivity in the lacustrine and marine environment. In: Stumm W (ed) Chemical processes in lakes. Wiley Interscience, New York, pp 99–118

    Google Scholar 

  • Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302

    Article  Google Scholar 

  • Middelburg JJ, Levin LA (2009) Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6:1273–1293

    Article  Google Scholar 

  • Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–176

    Article  Google Scholar 

  • Moschen R, Lücke A, Parplies J, Schleser GH (2009) Controls on the seasonal and interannual dynamics of organic matter stable carbon isotopes in mesotrophic Lake Holzmaar, Germany. Limnol Oceanogr 54:194–209

    Article  Google Scholar 

  • Needham A, Lindsay J, Smith I, Augustinus P, Shane P (2010) Sequential eruption of alkaline and sub-alkaline magmas from a small monogenetic volcano in the Auckland Volcanic Field, New Zealand. J Volcanol Geoth Res 201:126–142

    Article  Google Scholar 

  • Ogden J, Wilson A, Hendy C, Newnham RM, Hogg AG (1992) The late quaternary history of Kauri (Agathis australis) in New Zealand and its climatic significance. J Biogeogr 19:611–622

    Article  Google Scholar 

  • Page MJ, Trustrum NA, Orpin AR, Carter L, Gomez B, Cochran UA, Mildenhall DC, Rogers KM, Brackley HL, Palmer AS, Northcote L (2010) Storm frequency and magnitude in response to Holocene climate variability, Lake Tutira, North-Eastern Zew Zealand. Mar Geol 270:30–44

    Article  Google Scholar 

  • Quay PD, Emerson SR, Quay BM, Devol AH (1986) The carbon cycle for Lake Washington—a stable isotope study. Limnol Oceanogr 31:596–611

    Article  Google Scholar 

  • Raven JA, Cockell CS, De La Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos Trans R Soc Lond B Biol Sci 363:2641–2650

    Article  Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Bucks CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51:1111–1150

    Google Scholar 

  • Schelske CL, Hodell DA (1991) Recent changes in productivity and climate of Lake Ontario detected by isotopic analysis of sediments. Limnol Oceanogr 36:961–975

    Article  Google Scholar 

  • Shane P, Smith I (2000) Geochemical fingerprinting of basaltic tephra deposits in the Auckland Volcanic Field. N Z J Geol Geophys 43:569–577

    Article  Google Scholar 

  • Sorrell BK, Downes MT, Stanger CL (2002) Methanotrophic bacteria and their activity on submerged aquatic macrophytes. Aquat Bot 72:107–119

    Article  Google Scholar 

  • Striewski B, Mayr C, Flenley J, Naumann R, Turner G, Lücke A (2009) Multi-proxy evidence of late Holocene human-induced environmental changes at Lake Pupuke, Auckland (New Zealand). Quat Int 202:69–93

    Article  Google Scholar 

  • Talbot MR, Laerdal T (2000) The Late Pleistocene-Holocene palaeolimnology of Lake Victoria, East Africa, based upon elemental and isotopic analyses of sedimentary organic matter. J Paleolimnol 23:141–164

    Article  Google Scholar 

  • Tenaud M, Ohmori M, Miyachi S (1989) Inorganic carbon and acetate assimilation in Botryococcus-braunii (Chlorophyta). J Phycol 25:662–667

    Article  Google Scholar 

  • Van Hardenbroek M, Heiri O, Grey J, Bodelier PLE, Verbruggen F, Lotter AF (2010) Fossil chironomid δ13C as a proxy for past methanogenic contribution to benthic food webs in lakes? J Paleolimnol 43:235–245

    Article  Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57(58):1–45

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology—lake and river ecosystems. Academic Press, San Diego

    Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Article  Google Scholar 

  • Williams PE, King DNT, Zhao JX, Collerson KD (2004) Speleothem master chronologies: combined Holocene 18O and 13C records from the North Island of New Zealand and their palaeoenvironmental interpretation. Holocene 14:194–208

    Article  Google Scholar 

  • Williams PW, Neil HL, Zhao J-X (2010) Age frequency distribution and revised stable isotope curves for New Zealand speleothems: palaeoclimatic implications. Int J Speleol 39:99–112

    Google Scholar 

Download references

Acknowledgments

We thank Gillian Turner and Jim Neale for coring, Markus Oehlerich and Laurentius Sauer for assistance in the isotope lab, Alexander Altenbach for discussions. Thomas Stephens, an anonymous reviewer and the editors Thomas Whitmore and Steffen Mischke provided useful comments on an earlier version of this manuscript. Funding to AL and CM by the German Research Foundation (grant nos. MA 4235/1-1 and LU 786/5-1) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Mayr.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10933_2012_9606_MOESM1_ESM.tif

Lithostratigraphy and tephra layers of Lake Pupuke, sediment cores P2 [(a)-(e)] and P4 [(f)-(h)]: (a) lithozones; (b) lithology with main stratigraphic features and three macroscopically visible tephra beds (Rangitoto Tephra (Ro), Taupo Tephra (Tp), Tuhua Tephra (Tu) used to establish a chronostratigraphical framework for core P2. Core photographs of corresponding tephra layers in core P4 for comparison (Striewski et al. 2009). (TIFF 4471 kb)

10933_2012_9606_MOESM2_ESM.tif

Scanning electron photographs of sediment-samples and various components of OM, core Pupuke P2; A-E sample S1/131-132 (123 cm depth), F sample S1/94-95 (95 cm depth); for sizes see scale-bars. A. Almost pure monospecific diatom layer of Aulacoseira sp.. B. Detailed view of Aulacoseira sp. and Cyclotella sp. frustules. C. Monospecific layer of diatom frustules of an unidentified species). D. Detailed view of an unidentified chitinous fragment. E. Spherical diatom frustule (unidentified) with freshwater-sponge spicule. F. Chrysophycean cyst (TIFF 7910 kb)

10933_2012_9606_MOESM3_ESM.tif

SEM photographs of selected Botryococcus-samples of core P2 (for scales see bars). (A) Sample BOT/4-95 (534 cm depth) revealing skeleton-type colonies throughout the sample with poorly preserved, apical cell cups; observed diameters of colonies: 50-125 μm. (B) Sample 49BOT (189 cm depth), mainly consisting of well-preserved compound colonies with empty apical cell cups and diameters between 20 and 130 μm. (C) Sample 138BOT (279 cm depth), consisting of skeleton-type and well preserved compound colonies with diameters between 20 and 110 μm. (D) Badly preserved compound colony with apical cell cups almost indistinguishable (sample BOT/4-14; 452 cm depth). (E) Skeleton-type colony (sample BOT/4-14). (F) Well-preserved compound colony with empty apical cell cups (sample 138BOT). (G) Enlargement of the central part of the previous colony, showing cell cups with `growth rings′ of previous generations. (H) Well-preserved compound colony, partly with autospores inside the apical cell cups (sample BOT/4-14) (TIFF 12152 kb)

Reported ages and chemical composition of tephras in core P2 (DOC 33 kb)

AMS 14C-data from sediment core P2 and a modern aquatic macrophyte sample from Lake Pupuke (DOC 35 kb)

10933_2012_9606_MOESM6_ESM.doc

Summarized isotopic (δ 15N and δ 13COM; ‰) and geochemical data (TN, TC and TOC/TN) of potential sources of sedimentary organic matter in core P2 (DOC 211 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heyng, A.M., Mayr, C., Lücke, A. et al. Environmental changes in northern New Zealand since the Middle Holocene inferred from stable isotope records (δ15N, δ13C) of Lake Pupuke. J Paleolimnol 48, 351–366 (2012). https://doi.org/10.1007/s10933-012-9606-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-012-9606-5

Keywords

Navigation