Skip to main content

Advertisement

Log in

Paleolimnological evidence of the consequences of recent increased dissolved organic carbon (DOC) in lakes of the northeastern USA

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

As a result of reductions in sulfate deposition and changing climate, dissolved organic carbon (DOC) concentrations have increased in many lakes situated in forests of northeastern North America and northern Europe since the 1990s. Although this increase is well documented, the associated ecological implications remain unclear. In particular, DOC strongly influences the vertical temperature structure of lakes, with increasing DOC often leading to a shallower epilimnion. We investigated the effect of increased DOC concentrations on lake thermal structure using fossil diatom records from six remote Maine lakes. Sedimentary diatom profiles from three pairs of small (<0.5 km2) lakes were compared, with each pair containing one lake with a documented significant increase in DOC and the other experiencing no change in DOC since the early 1990s. Lake thermal structure was inferred from changes in the relative abundance of Discostella stelligera and Aulacoseira species, two diatom taxa that are associated with changes in thermal stratification. The three lakes without increasing DOC showed no change in diatom-inferred mixing depth over the past few decades. Of the lakes with documented increases in DOC, two showed the highest turnover in diatom community structure over time. Profiles from both of these lakes also indicated directional change in diatom-inferred mixing depth over the past 20 years, but the direction of change differed. This study demonstrates that recent increases in DOC have the potential to alter the physical and biological structure of lakes, but that these responses may differ across lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APHA (American Public Health Association) (2000) Standard methods for the examination of water and wastewater, 20th edn. APHA, Washington

    Google Scholar 

  • Appleby PG, Oldfield F (1978) The Calculation of Lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1–8

    Article  Google Scholar 

  • Arnott SE, Keller B, Dillon PJ, Yan N, Paterson M, Findlay D (2003) Using temporal coherence to determine the response to climate change in boreal shield lakes. Environ Monit Assess 88:365–388

    Article  Google Scholar 

  • Battarbee RW, Jones VJ, Flower BP, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol J, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3., Terrestrial, Algal, and Siliceous IndicatorsKluwer Academic Publishers, Dordrecht, pp 155–201

    Chapter  Google Scholar 

  • Benson BJ, Lenters JD, Magnuson JJ, Stubbs M, Kratz TK, Dillon PJ, Hecky RE, Lathrop RC (2000) Regional coherence of climatic and lake thermal variables of four lake districts in the Upper Great Lakes Region of North America. Freshw Biol 43:517–527. doi:10.1046/j.1365-2427.2000.00572.x

    Article  Google Scholar 

  • Boeff KA, Strock KE, Saros JE (2016) Evaluating planktonic diatom response to climate change across three lakes with differing morphometry. J Paleolimnol. doi:10.1007/s10933-016-9889-z

    Google Scholar 

  • Bukaveckas PA, Robbins-Forbes M (2000) Role of dissolved organic carbon in the attenuation of photosynthetically active and ultraviolet radiation in Adirondack lakes. Freshw Biol 43:339–354

    Article  Google Scholar 

  • Camburn KE, Charles DF (2000) Diatoms of low-alkalinity lakes in the Northeastern United States. Acad Nat Sci Phila Spec Pub 18:152

    Google Scholar 

  • Carney HJ, Richerson PJ, Goldman CR, Richards RC (1988) Seasonal phytoplankton demographic processes and experiments on interspecific competition. Ecology 69:664–678

    Article  Google Scholar 

  • Christensen DL, Carpenter SR, Cottingham KL et al (1996) Pelagic responses to changes in dissolved organic carbon following division of a seepage lake. Limnol Oceanogr 41:553–559

    Article  Google Scholar 

  • Couture S, Houle D, Gagnon C (2012) Increases of dissolved organic carbon in temperate and boreal lakes in Quebec, Canada. Environ Sci Pollut Res Int 19:361–371. doi:10.1007/s11356-011-0565-6

    Article  Google Scholar 

  • Davis RB, Anderson DS, Norton SA, Whiting MC (1994) Acidity of twelve northern New England (U.S.A.) lakes in recent centuries. J Paleolimnol 12:103–154

    Article  Google Scholar 

  • Dixit SS, Smol JP, Charles DF, Hughes RM, Paulsen SG, Collins GB (1999) Assessing water quality changes in the lakes of the northeastern United States using sediment diatoms. Can J Fish Aquat Sci 56:131–152

    Article  Google Scholar 

  • Driscoll CT, Lehtinen MD, Sullivan TJ (1994) Modeling the acid-base chemistry of organic solutes in Adirondack, New York, lakes. Water Resour Res 30:297–306

    Article  Google Scholar 

  • Fallu M-A, Pienitz R (1999) Diatomées lacustres de Jamésie-Hudsonie (Québec) et modèle de reconstitution des concentrations de carbone organique dissous. Ecosciene 6:603–620

    Article  Google Scholar 

  • Fee EJ, Hecky RE, Kasian SEM, Cruikshank DR (1996) Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol Oceanogr 41:912–920

    Article  Google Scholar 

  • Fernandez IJ, Schmitt CV, Birkel SD, Stancioff E, Pershing AJ, Kelley JT, Runge JA, Jacobson GL, Mayewski PA (2015) Maine’s Climate Future: 2015 Update. University of Maine, Orono, p 24

    Google Scholar 

  • Glew JR, Smol JP, Last WM (2001) Sediment core collection and extrusion. In: Smol J, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 1., Basin Analysis, Coring, and Chronological TechniquesKluwer Academic Publishers, Dordrecht, pp 73–105

    Chapter  Google Scholar 

  • Hall RI, Smol JP (1992) A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshw Biol 27:417–434

    Article  Google Scholar 

  • Hill MO, Gauch HG Jr (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58

    Article  Google Scholar 

  • Hobbs WO, Vinebrooke RD, Wolfe AP (2011) Biogeochemical responses of two alpine lakes to climate change and atmospheric deposition, Jasper and Banff National parks, Canadian Rocky Mountains. Can J Fish Aquat Sci 68:1480–1494. doi:10.1139/F2011-058

    Article  Google Scholar 

  • Houser JN (2006) Water color affects the stratification, surface temperature, heat content, and mean epilimnetic irradiance of small lakes. Can J Fish Aquat Sci 63:2447–2455. doi:10.1139/F06-131

    Article  Google Scholar 

  • Jewson DH (1992) Size Reduction, Reproductive Strategy and the Life Cycle of a Centric Diatom. Philos Trans R Soc B Biol Sci 336:191–213. doi:10.1098/rstb.1992.0056

    Article  Google Scholar 

  • Jones RI, Salonen K, De Haan H (1988) Phosphorus transformations in the epilimnion of humic lakes: abiotic interactions between dissolved humic materials and phosphate. Freshw Biol 19:357–369. doi:10.1111/j.1365-2427.1988.tb00357.x

    Article  Google Scholar 

  • Kissman CEH, Williamson CE, Rose KC, Saros JE (2013) Response of phytoplankton in an alpine lake to inputs of dissolved organic matter through nutrient enrichment and trophic forcing. Limnol Oceanogr 58:867–880

    Article  Google Scholar 

  • Köster D, Pienitz R (2006) Seasonal diatom variability and paleolimnological inferences – a case study. J Paleolimnol 35:395–416. doi:10.1007/s10933-005-1334-7

    Article  Google Scholar 

  • Kraemer BM, Anneville O, Chandra S, Dix M, Kuusisto E, Livingstone DM, Rimmer A, Schladow SG, Silow E, Sitoki LM, Tamatamah R, Vadeboncoeur Y, McIntyre PB (2015) Morphometry and average temperature affect lake stratification responses to climate change. Geophys Res Lett 42:4981–4988. doi:10.1002/2015GL064097

    Article  Google Scholar 

  • Krammer K, Lange-Bertalot H (1986–1991) Bacillariophyceae. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, vol 2(1–4)

  • Magnuson JJ, Benson BJ, Kratz TK (1990) Temporal coherence in the limnology of a suite of lakes in Wisconsin, U.S.A. Freshw Biol 23:145–159

    Article  Google Scholar 

  • Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Høgåsen T, Wilander A, Skjelkvåle BL, Jeffries DS, Vuorenmaa J, Keller B, Kopácek J, Vesely J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–540. doi:10.1038/nature06316

    Article  Google Scholar 

  • Morris DP, Zagarese H, Williamson CE, Balseiro EG, Hargreaves BR, Modenutti B, Moeller R, Queimalinos C (1995) The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limonol Oceanogr 40:1381–1391. doi:10.4319/lo.1995.40.8.1381

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin RR, O’Hara RB, Simpson GL, Solymos P, Stevens HH, Wagner H (2013) vegan: community ecology package. R package version 2.0–10. http://CRAN.R-project.org/package=vegan

  • Osberg PH, Hussey AM II, Boone GM (1985) Bedrock geologic map of Maine: Augusta, Maine, Maine Geological Survey, 1 map sheet, 1:500,000

  • Patrick R, Reimer CW (1966) The diatoms of the United States, exclusive of Alaska and Hawaii Volume 1: Fragilariaceae, Eunotiaceae, Achnanthaceae, Naviculaceae. Monographs of the Academy of Natural Sciences of Philadelphia 13

  • Patrick R, Reimer CW (1975) The diatoms of the United States, exclusive of Alaska and Hawaii Volume 2: Entomoneidaceae, Cymbellaceae, Gomphonemaceae, Epithemiaceae. Monographs of the Academy of Natural Sciences of Philadelphia 13

  • Peck DV (1992) Environmental Monitoring and Assessment Program: Integrated Quality Assurance Project Plan for the Surface Waters Resource Group. EPA/600/X-91/080, U.S. Environmental Protection Agency, Corvallis, OR

  • Perez-Fuenteaja A, Dillon PJ, Yan ND, Mcqueen DJ (1999) Significance of dissolved organic carbon in the prediction of thermocline depth in small Canadian shield lakes. Aquat Ecol 33:127–133

    Article  Google Scholar 

  • Persson I, Jones ID (2008) The effect of water colour on lake hydrodynamics: a modeling study. Freshw Biol 53:2345–2355. doi:10.1111/j.1365-2427.2008.02049.x

    Article  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Ramstack JM, Fritz SC, Engstrom DR (2004) Twentieth century water quality trends in Minnesota lakes compared with presettlement variability Twentieth century water quality trends in variability. Can J Fish Aquat Sci 61:561–576. doi:10.1139/F04-015

    Article  Google Scholar 

  • Read JS, Rose KC (2013) Physical responses of small temperate lakes to variation in dissolved organic carbon concentrations. Limnol Oceanogr 58:921–931

    Article  Google Scholar 

  • Reavie ED, Smol JP (2001) Diatom-environmental relationships in 64 alkaline southeastern Ontario (Canada) lakes: a diatom-based model for water quality reconstructions. J Paleolimnol 25:25–42

    Article  Google Scholar 

  • Rühland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Glob Chang Biol 14:2740–2754. doi:10.1111/j.1365-2486.2008.01670.x

    Google Scholar 

  • Sabater S, Haworth EY (1995) An assessment of recent trophic changes in Windermere South Basin (England) based on diatom remains and fossil pigments. J Paleolimnol 14:151–163. doi:10.1007/BF00735479

    Article  Google Scholar 

  • SanClements MD, Oelsner GP, McKnight DM, Stoddard JL, Nelson SJ (2012) New insights into the source of decadal increases of dissolved organic matter in acid-sensitive lakes of the northeastern United States. Environ Sci Technol 46:3212–3219. doi:10.1021/es204321x

    Article  Google Scholar 

  • Saros JE, Anderson NJ (2015) The ecology of the planktonic diatom Cyclotella and its implications for global environmental change studies. Biol Rev Camb Philos Soc 90:522–541. doi:10.1111/brv.12120

    Article  Google Scholar 

  • Saros JE, Michel TJ, Interlandi SJ, Wolfe AP (2005) Resource requirements of Asterionella formosa and Fragilaria crotonensis in oligotrophic alpine lakes : implications for recent phytoplankton community reorganizations. Can J Fish Aquat Sci 62:1681–1689. doi:10.1139/F05-077

    Article  Google Scholar 

  • Saros JE, Stone JR, Pederson GT, Slemmons KEH, Spanbauer T, Schliep A, Cahl D, Williamson CE, Engstrom DR (2012) Climate-induced changes in lake ecosystem structure inferred from coupled neo- and paleoecological approaches. Ecology 93:2155–2164

    Article  Google Scholar 

  • Schindler DW, Curtis PJ, Bayley SE, Parker BR, Beaty KG, Stainton MP (1997) Climate-induced changes in the dissolved organic carbon budgets of boreal lakes. Biogeochemistry 36:9–28

    Article  Google Scholar 

  • Sivarajah B, Rühland KM, Labaj AL, Paterson AM, Smol JP (2016) Why is the relative abundance of Asterionella formosa increasing in a Boreal Shield lake as nutrient levels decline? J Paleolimnol 55:357–367. doi:10.1007/s10933-016-9886-2

    Article  Google Scholar 

  • Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Rühland K, Sorvari S, Antoniades D, Brooks SJ, Fallu M, Hughes M, Keatley BE, Laing TE, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perron B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckström J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Natl Acad Sci U S A 102:4397–4402. doi:10.1073/pnas.0500245102

    Article  Google Scholar 

  • Snucins E, Gunn J (2000) Interannual variation in the thermal structure of clear and colored lakes. Limonology Oceanogr 45:1639–1646. doi:10.4319/lo.2000.45.7.1639

    Article  Google Scholar 

  • Stoddard JL, Jeffries DS, Lukewille A, Clair TA, Dillon PJ, Driscoll CT, Forsius M, Johannessen M, Kahl JS, Kellogg JH, Kemp A, Mannio J, Monteith DT, Murdoch PS, Patrick S, Rebsdorf A, Skjekvåle BL, Stainton MP, Traaen T, van Dam H, Webster KE, Wietling J, Wilander A (1999) Regional trends in aquatic recovery from acidification in North America and Europe. Nature 401:575–578. doi:10.1038/44114

    Article  Google Scholar 

  • Stoddard JL, Karl JS, Deviney FA, DeWalle DR, Driscoll CT, Herlihy AT, Kellogg JH, Murdoch PS, Webb JR, Webster KE (2003) Response of surface water chemistry to the Clean Air Act Amendments of 1990 Report EPA 620/R-03/001. United States Environmental Protection Agency, North Carolina

    Google Scholar 

  • Stone JR, Saros JE, Pederson GT (2016) Coherent late-Holocene climate-driven shifts in the structure of three Rocky Mountain lakes. Holocene. doi:10.1177/0959683616632886

    Google Scholar 

  • Strock KE, Nelson SJ, Kahl JS, Saros JE, McDowell WH (2014) Decadal trends reveal recent acceleration in the rate of recovery from acidification in the northeastern US. Environ Sci Technol 48:4681–4689. doi:10.1021/es404772n

    Article  Google Scholar 

  • Von Einem J, Graneli W (2010) Effects of fetch and dissolved organic carbon on epilimnion depth and light climate in small forest lakes in southern Sweden. Limnol Oceanogr 55:920–930

    Article  Google Scholar 

  • Wang L, Lu H, Liu J, Gu Z, Mingram J, Chu G, Li J, Rioual P, Negendank JFW, Han J, Liu T (2008) Diatom-based inference of variations in the strength of Asian winter monsoon winds between 17,500 and 6000 calendar years B.P. J Geophys Res. doi: 10.1029/2008JD010145

  • Weyhenmeyer GA, Karlsson J (2009) Nonlinear response of dissolved organic carbon concentrations in boreal lakes to increasing temperatures. Limnol Oceanogr 54:2513–2519. doi:10.4319/lo.2009.54.6_part_2.2513

    Article  Google Scholar 

  • Williamson CE, Morris DP, Pace ML, Olson OG (1999) Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm. Limnol Oceanogr 44:795–803

    Article  Google Scholar 

  • Williamson CE, Overholt EP, Pilla RM, Leach TH, Brentrup JA, Knoll LB, Mette EM, Moeller RE (2015) Ecological consequences of long-term browning in lakes. Sci Rep 5:18666. doi:10.1038/srep18666

    Article  Google Scholar 

  • Winder M, Schindler DE (2004) Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85:2100–2106. doi:10.1890/04-0151

    Article  Google Scholar 

  • Winder M, Reuter JE, Schladow SG (2009) Lake warming favours small-sized planktonic diatom species. Proc R Soc B 276:427–435

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dennis Anderson, Kelsey Boeff, Kate Warner, Kristin Strock, and Robert Northington for valuable field and laboratory assistance. The Department of Physics at the University of Maine provided the 210Pb dates. Funding for this work was provided by the Water Resources Research Institute at the University of Maine and the Gokcen Fund. The US EPA–USGS Long-Term Monitoring (LTM) Network project was funded by EPA ORD to J.S. Kahl, W.H. McDowell, S.J. Nelson, K.E. Webster; and EPA CAMD to W.H. McDowell, J.S. Kahl, S.J. Nelson (IAG 06HQGR0143), processed through Grant/Cooperative Agreement G11AP20128 from the United States Geological Survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Brown.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, R.E., Nelson, S.J. & Saros, J.E. Paleolimnological evidence of the consequences of recent increased dissolved organic carbon (DOC) in lakes of the northeastern USA. J Paleolimnol 57, 19–35 (2017). https://doi.org/10.1007/s10933-016-9913-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-016-9913-3

Keywords

Navigation