Skip to main content
Log in

Assessing intra-basin spatial variability in geochemical and isotopic signatures in the sediments of a small neotropical lake

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

We examined intra-basin spatial variability of sedimentary geochemical and isotopic signals using a network of five sediment cores from a small lake in southern Costa Rica with a history of prehistoric maize agriculture in its watershed. All cores show a similar pattern of agricultural activity (2000–1000 cal yr BP), a transitional period of forest recovery (1000–675 cal yr BP), and a period after forest reestablishment (675–400 cal yr BP). During the agricultural period, bulk sediment stable carbon isotope ratios (δ13CTOC) indicate significant forest clearance, percent total organic carbon (%TOC) is low due to accelerated erosion and dilution from mineral inputs to the lake, and carbon/nitrogen (C/N) ratios are consistent with increased productivity. At the conclusion of the agricultural period, δ13CTOC and %TOC indicate rapid forest recovery and reduced mineral inputs and C/N ratios suggest lower lake productivity. There is little between-core variation in the magnitude of the agricultural signal for the four cores taken near the shore, but these cores indicate different timing for the end of widespread agriculture in the watershed. Three of these four cores indicate nearly all agriculture ended by 1000 cal yr BP, but in the fourth core agricultural indicators persist until 675 cal yr BP. The core from the center of the lake shows a gradual decline in proxies indicating agriculture from 950 to 650 cal yr BP, which suggests sediment-reworking processes are integrating material from the entire basin as it is transported to the deeper portions of the lake. Differences between the records from the cores recovered near the shore illustrate the potential of multiple core studies to create spatially explicit paleoenvironmental reconstructions, while the delayed and less abrupt changes in the core from the center of the lake highlight the importance of sediment reworking of paleoenvironmental indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anchukaitis K, Horn SP (2005) A 2000-year reconstruction of forest disturbance from southern Pacific Costa Rica. Palaeogeogr Palaeoclimatol Palaeoecol 221:35–54

    Article  Google Scholar 

  • Anderson NJ (1989) A whole-basin diatom accumulation rate for a small eutrophic lake in northern Ireland and its palaeoecological implications. J Ecol 77:926–1846

    Article  Google Scholar 

  • Anderson NJ (1990a) Spatial pattern of recent sediment and diatom accumulation in a small, monomictic, eutrophic lake. J Paleolimnol 3:143–160

    Article  Google Scholar 

  • Anderson NJ (1990b) Variability of diatom concentrations and accumulation rates in sediments of a small lake basin. Limnol Oceanogr 35:497–508

    Article  Google Scholar 

  • Anderson NJ (1998) Variability of diatom-inferred phosphorus profiles in a small lake basin and its implications for histories of lake eutrophication. J Paleolimnol 20:47–55

    Article  Google Scholar 

  • Anselmetti FS, Ariztegui D, Hodell DA, Hillesheim MB, Brenner M, Gilli A, McKenzie JA, Mueller AD (2006) Late Quaternary climate-induced lake level variations in Lake Peten Itza, Guatemala, inferred from seismic stratigraphic analysis. Palaeogeogr Palaeoclimatol Palaeoecol 230:52–69

    Article  Google Scholar 

  • Anselmetti FS, Hodell DA, Ariztegui D, Brenner M, Rosenmeier MF (2007) Quantification of soil erosion rates related to ancient Maya deforestation. Geology 35:915–918

    Article  Google Scholar 

  • Behling H (2000) 2860-year high resolution pollen and charcoal record from the Cordillera de Talamanca in Panama: a history of human and volcanic forest disturbance. Holocene 10:387–393

    Article  Google Scholar 

  • Bender MM (1971) Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10:1239–1244

    Article  Google Scholar 

  • Bohacs KM, Carroll AR, Neal JE, Mankiewicz PJ (2000) Lake-basin type, source potential, and hydrocarbon character: an integrated-sequence-stratigraphic-geochemical framework. In: Gierlowski-Kordesch EH, Kelts KR (eds) Lake basins through space and time. American Association of Petroleum Geologists Studies, pp 3–34

  • Brown RH (1999) Agronomic implications of C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, pp 473–507

    Chapter  Google Scholar 

  • Charles D, Dixit S, Cumming B, Smol J (1991) Variability in diatom and chrysophyte assemblages and inferred pH: paleolimnological studies of Big Moose Lake, New York, USA. J Paleolimnol 5:267–284

    Article  Google Scholar 

  • Chazdon RL (1978) Ecological aspects of the distribution of C4 grasses in selected habitats of Costa Rica. Biotropica 10:265–269

    Article  Google Scholar 

  • Clement RM, Horn SP (2001) Pre-Columbian land use history in Costa Rica: a 3000-year record of forest clearance, agriculture and fires from Laguna Zoncho. Holocene 11:419–426

    Article  Google Scholar 

  • Colinvaux PA, de Oliveira PE, Moreno JE (1999) Amazon pollen manual and atlas. Harwood Academic Publishers, Amsterdam

    Google Scholar 

  • Davis MB (1973) Redeposition of pollen grains in lake sediment. Limnol Oceanogr 18:44–52

    Article  Google Scholar 

  • Davis MB, Brubaker LB (1973) Differential sedimentation of pollen grains in lakes. Limnol Oceanogr 18:635–646

    Article  Google Scholar 

  • Davis MB, Ford MS (1982) Sediment focusing in Mirror Lake, New Hampshire. Limnol Oceanogr 27:137–150

    Article  Google Scholar 

  • Davis MB, Moeller RE, Ford J (1984) Sediment focusing and pollen influx. In: Haworth EY, Lund JWG (eds) Lake sediments and environmental history. University of Leicester Press, Leicester, pp 261–293

    Google Scholar 

  • Davis R (1989) The scope of Quaternary paleolimnology. J Paleolimnol 2:263–283

    Article  Google Scholar 

  • Dearing J (1983) Changing patterns of sediment accumulation in a small lake in Scania, southern Sweden. Hydrobiologia 103:59–64

    Article  Google Scholar 

  • Engstrom D, Swain E (1986) The chemistry of lake sediments in time and space. Hydrobiologia 143:37–44

    Article  Google Scholar 

  • Engstrom DR, Rose NL (2013) A whole-basin, mass-balance approach to paleolimnology. J Paleolimnol 49:333–347

    Article  Google Scholar 

  • Filippelli GM, Souch C, Horn SP, Newkirk D (2010) The pre-Colombian footprint on terrestrial nutrient cycling in Costa Rica: insights from phosphorus in a lake sediment record. J Paleolimnol 43:843–856

    Article  Google Scholar 

  • Fisher TG, Loope WL, Pierce W, Jol HM (2007) Big lake records preserved in a little lake’s sediment: an example from Silver Lake, Michigan, USA. J Paleolimnol 37:365–382

    Article  Google Scholar 

  • Flocks J, Kindinger J, Marot M, Holmes C (2009) Sediment characterization and dynamics in Lake Pontchartrain, Lousiana. J Coast Res 54:113–126

    Article  Google Scholar 

  • Gu B, Schelske CL, Brenner M (1996) Relationship between sediment and plankton isotope ratios (δ13C and δ15N) and primary productivity in Florida lakes. Can J Fish Aquat Sci 53:875–883

    Article  Google Scholar 

  • Haberyan KA, Horn SP (2005) Diatom paleoecology of Laguna Zoncho, Costa Rica. J Paleolimnol 33:361–369

    Article  Google Scholar 

  • Hartshorn GS (1983) Plants. In: Janzen D (ed) Costa Rican natural history. University of Chicago Press, Chicago, pp 118–157

    Google Scholar 

  • Hilton J (1985) A conceptual framework for predicting the occurrence of sediment focusing and sediment redistribution in small lakes. Limnol Oceanogr 30:1131–1143

    Article  Google Scholar 

  • Hilton J, Lishman JP, Allen PV (1986) The dominant processes of sediment distribution and focusing in a small, eutrophic lake. Limnol Oceanogr 31:125–133

    Article  Google Scholar 

  • Horn SP (2006) Pre-Columbian maize agriculture in Costa Rica: pollen and other evidence from lake and swamp sediments. In: Staller J, Tykot R, Benz B (eds) Histories of maize: multidisciplinary approaches to the prehistory, biogeography, domestication, and evolution of maize. Elsevier, San Diego, pp 368–376

    Google Scholar 

  • Huang Y, Street-Perrott FA, Perrott RA, Metzger P, Eglinton G (1999) Glacial–interglacial environmental changes inferred from molecular and compound-specific δ13C analyses of sediments from Sacred Lake, Mt Kenya. Geochim Cosmochim Acta 63:1383–1404

    Article  Google Scholar 

  • Hubeny JB, McCarthy FMG, Lewis J, Drljepan M, Morissette C, King JW, Cantwell M, Hudson NM, Crispo ML (2015) The paleohydrology of Sluice Pond, NE Massachusetts, and its regional significance. J Paleolimnol 53:271–287

    Article  Google Scholar 

  • Korsman T, Nilsson MB, Landgren K, Renberg I (1999) Spatial variability in surface sediment composition characterised by near-infrared (NIR) reflectance spectroscopy. J Paleolimnol 21:61–71

    Article  Google Scholar 

  • Kumke T, Schoonderwaldt A, Kienel U (2005) Spatial variability of sedimentological properties in a large Siberian lake. Aquat Sci 67:86–96

    Article  Google Scholar 

  • Lamoureux S (1999) Spatial and interannual variations in sedimentation patterns recorded in onglacial varved sediments from the Canadian High Arctic. J Paleolimnol 21:73–84

    Article  Google Scholar 

  • Lane CS, Horn SP, Mora CI (2004) Stable carbon isotope ratios in lake and swamp sediments as a proxy for prehistoric forest clearance and crop cultivation in the neotropics. J Paleolimnol 32:375–381

    Article  Google Scholar 

  • Lane CS, Horn SP, Taylor ZP, Mora CI (2009) Assessing the scale of prehistoric human impact in the neotropics using stable carbon isotope analyses of lake sediments: a test case from Costa Rica. Lat Am Antiq 20:120–133

    Google Scholar 

  • Lane CS, Mora CI, Horn SP, Orvis KH (2008) Sensitivity of bulk sedimentary stable carbon isotopes to prehistoric forest clearance and maize agriculture. J Archaeol Sci 35:2119–2132

    Article  Google Scholar 

  • Larson CPS, MacDonald GM (1994) Lake morphology, sediment mixing and the selection of sites for fine resolution paleoecological studies. Quat Sci Rev 12:781–793

    Article  Google Scholar 

  • Laurencich de Minelli L, Minelli L (1966) Informe preliminar sobre excavaciones alrededor de San Vito de Java. In: 36th international congress of Americanists (Seville, 1964) Acta, Vol. 1, pp 415–427

  • Lebo ME, Reuter JE (1995) Spatial variability in sediment composition and evidence for resuspension in large, deep lake. Mar Freshw Res 46:321–326

    Google Scholar 

  • Lehman JT (1975) Reconstructing the rate of accumulation of lake sediment: the effect of sediment focusing. Quat Res 5:541–550

    Article  Google Scholar 

  • Lu YH, Meyers PA, Robbins JA, Eadie BJ, Hawley N, Hyeun Ji K (2014) Sensitivity of sediment geochemical proxies to coring location and corer type in a large lake: implications for paleolimnological reconstruction. Geochem Geophys Geosyst 15:1960–1976

    Article  Google Scholar 

  • Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic-matter. Chem Geol 114:289–302

    Article  Google Scholar 

  • Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289

    Article  Google Scholar 

  • Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry: an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900

    Article  Google Scholar 

  • Moorman BJ (2002) Ground-penetrating radar applications in paleolimnology. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, basin analysis, coring, and chronological techniques, vol 1. Kluwer Academic Publishers, Dordrecht, pp 23–47

    Chapter  Google Scholar 

  • O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–567

    Article  Google Scholar 

  • Oldfield F, Wu R (2000) The magnetic properties of the recent sediments of Brothers Water, NW England. J Paleolimnol 23:165–174

    Article  Google Scholar 

  • Reavie E, Baratono N (2007) Multi-core investigation of a lotic bay of Lake of the Woods (Minnesota, USA) impacted by cultural development. J Paleolimnol 38:137–156

    Article  Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1058

    Google Scholar 

  • Sage RF, Wedin DA, Li M (1999) The biogeography of C4 photosynthesis: patterns and controlling factors. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, pp 313–373

    Chapter  Google Scholar 

  • Sass O, Krautblatter M, Morche D (2007) Rapid lake infill following major rockfall (bergsturz) events revealed by ground-penetrating radar (GPR) measurements, Reintal, German Alps. Holocene 17:965–976

    Article  Google Scholar 

  • Shinker JJ, Shuman BN, Minkley TA, Henderson KA (2010) Climatic shifts in the availability of contested waters: a long-term perspective from the headwaters of the North Platte River. Ann Assoc Am Geogr 100:866–879

    Article  Google Scholar 

  • Shuman B, Donnelly JP (2006) The influence of seasonal precipitation and temperature regimes on lake levels in the northeastern United States during the Holocene. Quat Res 65:44–56

    Article  Google Scholar 

  • Shuman B, Henderson KA, Plank C, Stefanova I, Ziegler SS (2009) Woodland-to-forest transition during prolonged drought in Minnesota after ca. AD 1300. Ecology 90:2792–2807

    Article  Google Scholar 

  • Shuman B, Newby P, Donnelly JP, Tarbox A, Webb T III (2005) A record of late-Quaternary moisture-balance change and vegetation response from the White Mountains, New Hampshire. Ann Assoc Am Geogr 95:237–248

    Article  Google Scholar 

  • Soto K, Gómez L (2002) Sitio Arqueologico el Zoncho CAT. U.C.R. N.168: Una Manifestación de los Agricultores Especializados en las Tierra Intermedias de San Vito, Cantón de Coto Brus, Puntarenas. Universidad de Costa Rica, San Jose

    Google Scholar 

  • Stuiver M, Reimer P (1993) Extended C-14 database and revised CALIB 3.0 C-14 age calibration program. Radiocarbon 35:215–230

    Google Scholar 

  • Taylor ZP, Horn SP, Finkelstein DB (2013a) Maize pollen concentrations in Neotropical lake sediments as an indicator of the scale of prehistoric agriculture. Holocene 23:78–84

    Article  Google Scholar 

  • Taylor ZP, Horn SP, Finkelstein DB (2013b) Pre-Hispanic agricultural decline prior to the Spanish Conquest in southern Central America. Quat Sci Rev 73:196–200

    Article  Google Scholar 

  • Telford RJ, Heegaard E, Birks HJB (2004) The intercept is a poor estimate of a calibrated radiocarbon age. Holocene 14:296–298

    Article  Google Scholar 

  • Wang JB, Zhu LP, Nishimura M, Nakamura T, Ju J, Xie MP, Takahiro W, Testsuya M (2009) Spatial variability and correlation of environmental proxies during the past 18,000 years among multiple cores from Lake Pumoyum Co, Tibet, China. J Paleolimnol 42:303–315

    Article  Google Scholar 

  • Whitmore TJ, Brenner M, Schelske CL (1996) Highly variable sediment distribution in shallow, wind-stressed lakes: a case for sediment-mapping surveys in paleolimnological studies. J Paleolimnol 15:207–221

    Article  Google Scholar 

  • Wolfe BB, Edwards TWD, Aravena R (1999) Changes in carbon and nitrogen cycling during tree-line retreat recorded in the isotopic content of lacustrine organic matter, western Taimyr Peninsula, Russia. Holocene 9:215–222

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant Nos. 0538420 (SPH, K. Orvis, and L. Champion) and 0825406 (SPH, DBF, and ZPT); by the Geological Society of America (ZPT); and by the Jones Environmental Geochemistry Endowment (DBF) and other funds at the University of Tennessee. We thank G. Hewson Hull and H. Hull for access to Laguna Zoncho; M. Sánchez for logistical support; Z. Li for guidance in the University of Tennessee Stable Isotope Laboratory; G. Metcalf for field and laboratory assistance; J. Malik and L. Goethert for laboratory assistance; and K. Orvis, C. Harden, and anonymous reviewers for helpful comments on earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary P. Taylor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, Z.P., Horn, S.P. & Finkelstein, D.B. Assessing intra-basin spatial variability in geochemical and isotopic signatures in the sediments of a small neotropical lake. J Paleolimnol 54, 395–411 (2015). https://doi.org/10.1007/s10933-015-9859-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-015-9859-x

Keywords

Navigation