Skip to main content
Log in

Spatial variability and correlation of environmental proxies during the past 18,000 years among multiple cores from Lake Pumoyum Co, Tibet, China

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Multiple cores from Lake Pumoyum Co, southern Tibet, provide an improved understanding of the spatial distribution of lake sediments, and how well they represent the paleo-climate. Comparative study of these cores using AMS 14C dating and environmental proxies clarified their relationships with environmental changes. Our work focused on understanding the spatial similarities among cores covering different time scales, and evaluating variations in sedimentary processes across sites. The four studied cores demonstrate different sedimentation rates, but environmental proxies help synchronize the timing of environmental variations. Sediment variables such as total organic carbon (TOC), inorganic carbon (IC), and grain size in different cores correlate well and corroborate changing trends over the past 10,000 cal years. Differences in sedimentation rates and facies among core sites probably result largely from differences in water depth. The core from the deepest site displays the highest average sedimentation rates and the highest accumulation rates of TOC, but lowest content of IC. Two cores from somewhat shallower sites have plant residues in their lower sections and record similar variations in both the number of layers and their depositional ages. Our results do not indicate any significant variation in sedimentation pattern or its related factors among the three sites. A single core from the deepest site could adequately represent the total lake environment over the time span covered. But cores from somewhat shallower sites might reveal important shifts in the environment over a longer time period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson NJ (1990a) Spatial pattern of recent sediment and diatom accumulation in a small, monomictic, eutrophic lake. J Paleolimnol 3:143–160

    Article  Google Scholar 

  • Anderson NJ (1990b) Variability of diatom concentration and accumulation rates in sediments of a small lake basin. Limnol Oceanogr 35:497–508

    Google Scholar 

  • Bloesch J, Uehlinger U (1986) Horizontal sedimentation differences in a eutrophic Swiss lake. Limnol Oceanogr 31:1094–1109

    Google Scholar 

  • Boyle JF (2001) Inorganic geochemical methods in paleolimnology. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 2: physical and geochemical methods. Kluwer, Dordrecht, pp 83–142

    Google Scholar 

  • Boyle JF, Mackay AW, Rose NL, Flower RJ, Appleby PG (1998) Sediment heavy metal record in Lake Baikal: natural and anthropogenic sources. J Paleolimnol 20:135–150

    Article  Google Scholar 

  • Charles DF, Dixit SS, Cumming BF, Smol JP (1991) Variability in diatom and chrysophyte assemblages and inferred pH: paleolimnological studies of Big Moose Lake, New York, USA. J Paleolimnol 5:267–284. doi:10.1007/BF00200350

    Article  Google Scholar 

  • Chen JA, Wan GJ, Wang FS, Zhang DD, Huang RG, Zhang F (2002) Environmental records of carbon in recent lake sediments. Sci China (Series D) 45:875–884

    Article  Google Scholar 

  • Chen JA, Wan GJ, Zhang DD, Zhang F, Huang RG (2004) Environmental records of lacustrine sediments in different time scales: sediment grain size as an example. Sci China (Series D) 47:954–960

    Article  Google Scholar 

  • Davis MB, Ford MS (1982) Sediment focusing in Mirror Lake, New Hampshire. Limnol Oceanogr 27:137–150

    Google Scholar 

  • Dean WE (1981) Carbonate minerals and organic matter in sediments of modern north temperate hard-water lakes. Soc Econ Paleont Miner 31:213–231 Special Publication

    Google Scholar 

  • Dearing JA (1983) Changing patterns of sediment accumulation in a small lake in Scania, southern Sweden. Hydrobiologia 103:59–64. doi:10.1007/BF00028428

    Article  Google Scholar 

  • Dearing JA (1997) Sedimentary indicators of lake-level changes in the humid temperate zone: a critical review. J Paleolimnol 18(1):1–14. doi:10.1023/A:1007916210820

    Article  Google Scholar 

  • Digerfeldt G (1986) Studies on past lake-level fluctuations. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 127–143

    Google Scholar 

  • Digerfeldt G, Olsson S, Sandgren P (2000) Reconstruction of lake-level changes in lake Xinias, central Greece, during the last 40,000 years. Palaeogeogr Palaeoclimatol Palaeoecol 158:65–82. doi:10.1016/S0031-0182(00)00029-8

    Article  Google Scholar 

  • Downing JA, Rath LC (1988) Spatial patchiness in the lacustrine sedimentary environment. Limnol Oceanogr 33(3):447–458

    Google Scholar 

  • Engstrom DR, Swain EB (1986) The chemistry of lake sediments in time and space. Hydrobiologia 143:37–44. doi:10.1007/BF00026642

    Article  Google Scholar 

  • Folk RL, Ward WC (1957) Brazos river bar: a study in significance of grain size parameters. J Sediment Petrol 27:3–27

    Google Scholar 

  • Gasse F, Anold M, Fontes JC, Fort M, Gibert E, Huc A, Li BY, Li YF, Liu Q, Mélières F, van Campo E, Wang FB, Zhang QS (1991) A 13000-year climate record from western Tibet. Nature 353:742–745. doi:10.1038/353742a0

    Article  Google Scholar 

  • Gasse F, Fontes JC, van Campo E, Wei K (1996) Holocene environmental changes in Bangong Co basin (western Tibet). Part 4: discussion and conclusions. Palaeogeogr Palaeoclimatol Palaeoecol 120:79–92. doi:10.1016/0031-0182(95)00035-6

    Article  Google Scholar 

  • Gu ZY, Liu JQ, Yuan BY, Liu TS, Liu RM, Liu Y, Katsumi Y (1993) Monsoon variations of the Qinghai-Xizang Plateau during the last 12,000 years-Geochemical evidence from the sediments in the Siling Lake. Chin Sci Bull 38:577–581

    Google Scholar 

  • Guan ZH, Chen CY, Ou YX, Fan YQ, Zhang YS, Chen ZM (1984) Rivers and lakes in Tibet (in Chinese). Science Press, Beijing, 115–215

    Google Scholar 

  • Håkanson L (1982) Bottom dynamics in lakes. Hydrobiologia 91:9–22

    Google Scholar 

  • Håkanson L, Jansson M (1983) Principles of lake sedimentology. Springer, Berlin, p 316

    Google Scholar 

  • Hilton J (1985) A conceptual framework for predicting the occurrence of sediment focusing and sediment redistribution in small lakes. Limnol Oceanogr 30:1131–1143

    Google Scholar 

  • Hilton J, Lishman JP, Allen PV (1986) The dominant processes of sediment distribution and focusing in a small, eutrophic, monomictic lake. Limnol Oceanogr 31:125–133

    Article  Google Scholar 

  • Jones BF, Bowser CJ (1978) The mineralogy and related chemistry of lake sediments. In: Lerman A (ed) Lakes: chemistry, geology, physics. Springer, New York, pp 179–236

    Google Scholar 

  • Ju JT, Zhu LP, Wang Y, Xie MP, Peng P, Zhen XL, Wang JB (2008) Composition, spatial distribution and environmental significance of water ions in Lake Pumayum Co and its catchment, southern Tibet. J Lake Sci 20(5):591–599 (in Chinese with English abstract)

    Google Scholar 

  • Kelts K, Hsü KJ (1978) Freshwater carbonate sedimentation. In: Lerman A (ed) Lakes: chemistry, geology, physics. Springer, New York, pp 295–323

    Google Scholar 

  • Lamoureux S (1999) Spatial and interannual variations in sedimentation patterns recorded in nonglacial varved sediments from the Canadian High Arctic. J Paleolimnol 21:73–84. doi:10.1023/A:1008064315316

    Article  Google Scholar 

  • LIGCAS (Lanzhou Institute of Geology Chinese Academy of Sciences and 3 other institutes) (1979) Reports of comprehensive investigation on Qinghai Lake (in Chinese). Science Press, Beijing, pp 1–270

    Google Scholar 

  • Last WM (2001) Textural analysis of lake sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 2: physical and geochemical methods. Kluwer, Dordrecht, pp 41–81

    Google Scholar 

  • Lees JA, Flower RJ, Ryves D, Vologina E, Sturm M (1998) Identifying sedimentation patterns in Lake Baikal using whole core and surface scanning magnetic susceptibility. J Paleolimnol 20:187–202. doi:10.1023/A:1008043230549

    Article  Google Scholar 

  • Li BY, Wang FB, Zhang QS, Yang YC, Yin ZS, Jing K (1983) Quaternary Geology in Tibet (in Chinese). Science Press, Beijing, p 15

    Google Scholar 

  • Li SJ, Ou RK, Zhu ZY, Li BY (1998) A carbonate content record of lake quaternary climate and environment changes from lacustrine core TS95 in Tianshuihai Lake basin, Northwestern Qinghai-Xizang (Tibet) Plateau. J Lake Sci 10:58–65 (in Chinese with English abstract)

    Google Scholar 

  • Lister GS, Kelts K, Chen KZ, Yu JQ, Niessen F (1991) Lake Qinghai, China: close-basin lake levels and the oxygen isotope record for ostracoda since the latest Pleistocene. Palaeogeogr Palaeoclimatol Palaeoecol 84:141–162. doi:10.1016/0031-0182(91)90041-O

    Article  Google Scholar 

  • Liu GX, Shi YF, Shen YP, Hong M (1997) Holocene megathermal environment in the Tibetan Plateau. J Glaciol Geocryol 19:114–123 (in Chinese with English abstract)

    Google Scholar 

  • Liu TC (1995) Changes of Yamzho Lake water stage in Xizang. Sci Geogr Sin 15:55–62 (in Chinese with English abstract)

    Google Scholar 

  • Mitamura O, Seike Y, Kondo K, Goto N, Anbutsu K, Akatsuka T, Kihara M, Qung Tsering T, Nishimura M (2003) First investigation of ultraoligotrophic alpine Lake Puma Yumco in the pre-Himalaya, China. Limnology 4:167–175. doi:10.1007/s10201-003-0101-6

    Article  Google Scholar 

  • Murakami T, Terai H, Yoshiyama Y, Tezuka T, Zhu L, Matsunaka T, Nishinmura M (2007) The second investigation of Lake Puma Yum Co located in the southern Tibetan Plateau, China. Limnology 8:331–335. doi:10.1007/s10201-007-0208-2

    Article  Google Scholar 

  • Oldfield F, Wu R (2000) The magnetic properties of the recent sediments of brothers water, NW England. J Paleolimnol 23:165–174. doi:10.1023/A:1008049419623

    Article  Google Scholar 

  • Punning JM, Koff T, Kadastik E, Mikomägi A (2005) Holocene lake level fluctuations recorded in the sediment composition of Lake Juusa, Southeastern Estonia. J Paleolimnol 34:377–390. doi:10.1007/s10933-005-6751-0

    Article  Google Scholar 

  • Reavie ED, Baratono NG (2007) Multi-core investigation of a lotic bay of lake of the woods (Minnesota, USA) impacted by cultural development. J Paleolimnol 38:137–156. doi:10.1007/s10933-006-9069-7

    Article  Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal k year BP. Radiocarbon 46:1029–1058

    Google Scholar 

  • Schiefer E (2006) Depositional regimes and areal continuity of sedimentation in a montane lake basin, British Columbia, Canada. J Paleolimnol 35:617–628. doi:10.1007/s10933-005-5265-0

    Article  Google Scholar 

  • Shen J, Liu XQ, Matsumoto R, Wang SM, Yang XD (2005) A high-resolution climatic change since the late glacial age inferred from multi-proxy of sediments in Qinghai Lake. Sci China (Series D) 48:742–751

    Article  Google Scholar 

  • Sly PG (1978) Sedimentary process in lakes. In: Lerman A (ed) Lakes: chemistry, geology, physics. Springer, New York, pp 65–89

    Google Scholar 

  • Teller JT, Last WM (1990) Paleohydrological indicators in playas and salt lakes, with examples from Canada, Australia, and Africa. Palaeogeogr Palaeoclimatol Palaeoecol 76:215–240. doi:10.1016/0031-0182(90)90114-M

    Article  Google Scholar 

  • Wang JB, Zhu LP (2005) Environmental change reflected by lake sediments on Tibetan Plateau: progress and prospect. Prog Geogr 24:1–12 (in Chinese with English abstract)

    Google Scholar 

  • Wang R, Yang XD, Zhu LP (2006) Environmental changes of Namu Co, Xizang during the past 200 years. Quat Sci 26:791–798 (in Chinese with English abstract)

    Google Scholar 

  • Wang SM, Dou HS (1998) Records of lakes in China (in Chinese). Science Press, Beijing, p 405

    Google Scholar 

  • Wang SM, Zhang ZK (1999) New progress of lake sediments and environmental changes research in China. Chin Sci Bull 44:1744–1754. doi:10.1007/BF02886151

    Article  Google Scholar 

  • Wang YF (1993) Lacustrine carbonate chemical sedimentation and climatic-environmental evolution—a case study of Qinghai Lake and Daihai Lake. Oceanol Limnol Sin 24:31–36 (in Chinese with English abstract)

    Google Scholar 

  • Wang YF, Hu WY, Zhang XZ (1989) Carbonate sediments in lakes of Yunnan, China. Oceanol Limnol Sin 20:122–130 (in Chinese with English abstract)

    Google Scholar 

  • Watanabe T, Nakamura T, Nishimura M, Matsunaka T, Minami M, Kakegawa T, Nara FW, Zhu L (2008) Radiocarbon chronology of a sediment core from Lake Pumoyum Co in the southeastern Tibetan Plateau. Verhandlungen Internationale Vereinigung fur Theoretische und Angewandte Limnologie (in press)

  • Wen SX, Zhang BG, Wang YG, Sun DL, Dong DY, Yin JX (1984) Stratigraphy of Xizang (Tibetan) Plateau (in Chinese). Science Press, Beijing, pp 340–365

    Google Scholar 

  • Wu JL, Schleser GH, Wang SM, Lücke A, Li SJ, Xia WL (2002) Quantitative recuperation of climatic sequences for the last 200 years in Xingcuo Lake, eastern Tibetan Plateau. Sci China (Series D) 45:832–841

    Google Scholar 

  • Wu YH, Wang SM, Xia WL, Zhu YX, Yin Y (2001) Environmental variation in central Tibetan Plateau in the last 200 years. Sci China (Series D) 44(suppl):332–337

    Article  Google Scholar 

  • Zhang JW, Jin M, Chen FH, Battarbee RW, Henderson ACG (2003) High-resolution precipitation variations in the northeast Tibetan Plateau over the last 800 years documented by sediment cores of Qinghai Lake. Chin Sci Bull 48:1451–1456. doi:10.1360/02wd0271

    Article  Google Scholar 

  • Zhu LP, Chen L, Li BY, Li YF, Xia WL, Li JG (2002) Environmental changes reflected by the lake sediments of the south Hongshan lake, northwest Tibet. Sci China (Series D) 45:430–439

    Article  Google Scholar 

  • Zhu LP, Ju JT, Wang JB, Nishimura M, Yoshimune M, Wu YH, Feng JL, Xie MP, Lin X (2006) Environmental changes recorded in core sediments from the Pumoyum Co lake of the Tibetan Plateau during the initial stage of the last deglacial period. Quat Sci 26:772–780 (in Chinese with English abstract)

    Google Scholar 

  • Zhu LP, Wang JB, Chen L, Yang JR, Li BY, Zhu ZY, Kitagawa H, Possnert G (2004) 20,000-years environmental change reflected by multidisciplinary lake sediments in Chen Co, southern Tibet. Acta Geogr Sin 59:514–524 (in Chinese with English abstract)

    Google Scholar 

  • Zhu LP, Wu YH, Wang JB, Lin X, Ju JT, Xie MP, Li MH, Mäusbacher R, Schwalb A, Daut G (2008) Environmental changes since 8.4 ka reflected in the lacustrine core sediments from Nam Co, central Tibetan Plateau, China. Holocene 18(5):831–839

    Article  Google Scholar 

  • Zhu LP, Zhang PZ, Xia WL, Li BY, Chen L (2003) 1,400-years cold/warm fluctuations reflected by environmental magnetism of a lake sediment core from the Chen Co, southern Tibet, China. J Paleolimnol 29:391–401. doi:10.1023/A:1024440516843

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the encouraging words and constructive opinions from an anonymous reviewer and editor for the first version of this manuscript. Thanks should be also given to J. R. Yang, from the Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), and S. P. Gao, from Institute of Tibetan Plateau Research, CAS, who gave great help with the laboratory work. We also thank J. L. Feng, L. S. Liu, Y. H. Wu, X. Lin, Y. Wang, X. L. Zhen, P. Peng, some technical workers and other Japanese team members of the 2004 and 2006 Sino-Japan Pumoyum Co expeditions. This research was supported jointly by the National Natural Sciences Foundation of China (Grant No. 40571172, 40331006), Chinese National Basic Research Program (Grant No. 2005CB422002) and EU 6th Framework Programme: BRAHMATWINN, FP6-036952.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Zhu, L., Nishimura, M. et al. Spatial variability and correlation of environmental proxies during the past 18,000 years among multiple cores from Lake Pumoyum Co, Tibet, China. J Paleolimnol 42, 303–315 (2009). https://doi.org/10.1007/s10933-008-9277-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-008-9277-4

Keywords

Navigation