Skip to main content
Log in

Expression and Purification of a Recombinant Enterotoxin Protein Using Different E. coli Host Strains and Expression Vectors

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Infection by Enterotoxigenic Escherichia coli is a common cause of diarrhea in animals. The development of vaccines against enterotoxins can effectively control the infection. We have previously constructed a recombinant antigen SLS fused by STa, LTB and STb enterotoxin and it showed a high immunogenicity in mice. Herein, we evaluated the expression of SLS in three different E. coli cells with corresponding plasmids. SLS proteins expressed in E. coli BL21 (DE3) and Rosetta-gami B (DE3) were aggregated as inclusion bodies, and the proteins solubility were not obviously promoted in low temperature combined with adjustment of inducer concentration. In contrast, SLS protein with maltose-binding protein (MBP) yielded from TB1 (DE3) cells were partially soluble. After increasing the IPTG concentration in the medium up to 2 mM and incubating at 37 ℃ for 4 h, the soluble protein yield reached the highest level (4.533 mg/0.2 L culture), which was significantly higher than the expression of SLS protein in Rosetta-gami B (DE3) (P < 0.05). Therefore, the TB1-pMAL expression system can be used for mass extraction and purification of SLS antigen prior to measuring its immunogenicity in pregnant mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed in the study are included in the published article.

References

  1. Matsumoto H, Miyagawa M, Takahashi S, Shima R, Oosumi T (2020) Improvement of the enterotoxigenic Escherichia coli infection model for post-weaning diarrhea by controlling for bacterial adhesion, pig breed and MUC4 genotype. Vet Sci 7:106. https://doi.org/10.3390/vetsci7030106

    Article  PubMed Central  Google Scholar 

  2. Augustino SMA, Xu Q, Liu X, Liu L, Zhang Q, Yu Y (2020) Transcriptomic study of porcine small intestine epithelial cells reveals important genes and pathways associated with susceptibility to Escherichia coli F4ac diarrhea. Front Genet 11:68. https://doi.org/10.3389/fgene.2020.00068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fairbrother JM, Nadeau E, Gyles CL (2005) Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev 6:17–39. https://doi.org/10.1079/ahr2005105

    Article  CAS  PubMed  Google Scholar 

  4. Luppi A, Gibellini M, Gin T, Vangroenweghe F, Vandenbroucke V, Bauerfeind R et al (2016) Prevalence of virulence factors in enterotoxigenic Escherichia coli isolated from pigs with post-weaning diarrhoea in Europe. Porcine Health Manag 2:20. https://doi.org/10.1186/s40813-016-0039-9

    Article  PubMed  PubMed Central  Google Scholar 

  5. Allen JW. Characterization of enterotoxigenic Escherichia coli. Available at https://portal.nifa.usda.gov/web/crisprojectpages/0198015-characterization-of-enterotoxigenic-escherichia-coli.html. Accessed 2 Jan, 2021

  6. Yang GY, Guo L, Su JH, Zhu YH, Jiao LG, Wang JF (2019) Frequency of diarrheagenic virulence genes and characteristics in Escherichia coli isolates from pigs with diarrhea in China. Microorganisms. https://doi.org/10.3390/microorganisms7090308

    Article  PubMed  PubMed Central  Google Scholar 

  7. Madhavan TP, Sakellaris H (2015) Colonization factors of enterotoxigenic Escherichia coli. Adv Appl Microbiol 90:155–197. https://doi.org/10.1016/bs.aambs.2014.09.003

    Article  CAS  PubMed  Google Scholar 

  8. Dubreuil JD (2017) Enterotoxigenic Escherichia coli and probiotics in swine what the bleep do we know. Biosci Microbiota 36:75–90. https://doi.org/10.12938/bmfh.16-030

    Article  CAS  Google Scholar 

  9. Rollenhagen JE, Woods CM, O’Dowd A, Poole ST, Tian JH, Guebre-Xabier M et al (2019) Evaluation of transcutaneous immunization as a delivery route for an enterotoxigenic E. coli adhesin-based vaccine with CfaE, the colonization factor antigen 1 (CFA/I) tip adhesin. Vaccine 37:6134–6138. https://doi.org/10.1016/j.vaccine.2019.08.057

    Article  CAS  PubMed  Google Scholar 

  10. Dubreuil JD (1997) Escherichia coli STb enterotoxin. Microbiol Rev 143:1783–1795. https://doi.org/10.1099/00221287-143-6-1783

    Article  CAS  Google Scholar 

  11. van Breda LK, Dhungyel OP, Ward MP (2018) Antibiotic resistant Escherichia coli in southeastern Australian pig herds and implications for surveillance. Zoonoses Public Health 65:e1–e7. https://doi.org/10.1111/zph.12402

    Article  CAS  PubMed  Google Scholar 

  12. Barton MD (2014) Impact of antibiotic use in the swine industry. Curr Opin Microbiol 19:9–15. https://doi.org/10.1016/j.mib.2014.05.017

    Article  PubMed  Google Scholar 

  13. Meeusen EN, Walker J, Peters A, Pastoret PP, Jungersen G (2007) Current status of veterinary vaccines. Clin Microbiol Rev 20:489–510. https://doi.org/10.1128/CMR.00005-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Taxt A, Aasland R, Sommerfelt H, Nataro J, Puntervoll P (2010) Heat-stable enterotoxin of enterotoxigenic Escherichia coli as a vaccine target. Infect Immun 78:1824–1831. https://doi.org/10.1128/IAI.01397-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moss J, Osborne JC, Fishmany JPH, Nakaya S, Robertson DC (1981) Escherichia coli heat-labile enterotoxin. Ganglioside specificity and ADP-ribosyltransferase activity. J Biol Chem 256:12861–12865

    Article  CAS  Google Scholar 

  16. You J, Xu Y, He M, McAllister TA, Thacker PA, Li X et al (2011) Protection of mice against enterotoxigenic E. coli by immunization with a polyvalent enterotoxin comprising a combination of LTB, STa, and STb. Appl Microbiol Biotechnol 89:1885–1893. https://doi.org/10.1007/s00253-010-2991-7

    Article  CAS  PubMed  Google Scholar 

  17. Slouka C, Kopp J, Spadiut O, Herwig C (2019) Perspectives of inclusion bodies for bio-based products: curse or blessing? Appl Microbiol Biotechnol 103:1143–1153. https://doi.org/10.1007/s00253-018-9569-1

    Article  CAS  PubMed  Google Scholar 

  18. Yu H, Wang Y, Zeng X, Cai S, Wang G, Liu L et al (2020) Therapeutic administration of the recombinant antimicrobial peptide microcin J25 effectively enhances host defenses against gut inflammation and epithelial barrier injury induced by enterotoxigenic Escherichia coli infection. FASEB J 34:1018–1037. https://doi.org/10.1096/fj.201901717R

    Article  CAS  PubMed  Google Scholar 

  19. Luise D, Lauridsen C, Bosi P, Trevisi P (2019) Methodology and application of Escherichia coli F4 and F18 encoding infection models in post-weaning pigs. J Anim Sci Biotechnol 10:53. https://doi.org/10.1186/s40104-019-0352-7

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zegeye ED, Govasli ML, Sommerfelt H, Puntervoll P (2019) Development of an enterotoxigenic Escherichia coli vaccine based on the heat-stable toxin. Hum Vaccin Immunother 15:1379–1388. https://doi.org/10.1080/21645515.2018.1496768

    Article  PubMed  Google Scholar 

  21. Fernandez S, Palmer DR, Simmons M et al (2007) Potential role for toll-like receptor 4 in mediating Escherichia coli maltose-binding protein activation of dendritic cells. Infect Immun 75:1359–1363. https://doi.org/10.1128/IAI.00486-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wan Y (2011) Chloramphenicol improved expression of recombinant cholera toxin B subunit in Escherichia coli and its adjuvanticity. Chin Med J 124(17):2751–2755. https://doi.org/10.3760/cma.j.issn.0366-6999.2011.17.033

    Article  CAS  PubMed  Google Scholar 

  23. Maryam TB, Mahdi B, Hossein A (2018) Antibiotic characterization of Acinetobacter baumannii isolated from clinical samples and production of recombinant OmpA from resistant strains. Jundishapur J Microbiol 11(12):e78773. https://doi.org/10.5812/jjm.78773

    Article  CAS  Google Scholar 

  24. Srivastava V, Mishra S, Chaudhuri TK (2019) Enhanced production of recombinant serratiopeptidase in Escherichia coli and its characterization as a potential biosimilar to native biotherapeutic counterpart. Microb Cell Fact 18:215. https://doi.org/10.1186/s12934-019-1267-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Neubauer P, Hofmann K (1994) Efficient use of lactose for the lac promoter-controlled overexpression of the main antigenic protein of the foot and mouth disease virus in Escherichia coli under fed-batch fermentation conditions. FEMS Microbiol Rev 14:99–102. https://doi.org/10.1111/j.1574-6976.1994.tb00080.x

    Article  CAS  PubMed  Google Scholar 

  26. San-Miguel T, Pérez-Bermúdez P, Gavidia I (2013) Production of soluble eukaryotic recombinant proteins in E. coli is favoured in early log-phase cultures induced at low temperature. SpringerPlus 2:89. https://doi.org/10.1186/2193-1801-2-89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sahdev S, Khattar SK, Saini KS (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 307:249–264. https://doi.org/10.1007/s11010-007-9603-6

    Article  CAS  PubMed  Google Scholar 

  28. Russell BL, Gildenhuys S. Solubilisation and purification of recombinant bluetongue virus VP7 expressed in a bacterial system. Protein Expr Purif 2018;147:85–93. https://doi.org/10.1016/j.pep.2018.03.006

    Article  CAS  PubMed  Google Scholar 

  29. Einsfeldt K, Júnior JBS, Argondizzo APC et al (2011) Cloning and expression of protease ClpP from Streptococcus pneumoniae in Escherichia coli: Study of the influence of kanamycin and IPTG concentration on cell growth, recombinant protein production and plasmid stability. Vaccine 29:7136–7143. https://doi.org/10.1016/j.vaccine.2011.05.073

    Article  CAS  PubMed  Google Scholar 

  30. Xin H, Leanza K, Spremulli LL (1997) Expression of bovine mitochondrial elongation factor Ts in Escherichia. Biochem Biophys Acta 1352:102-112. https://doi.org/10.1016/s0167-4781(97)00003-1

    Article  CAS  PubMed  Google Scholar 

  31. Steinhardt J (1938) Properties of hemoglobin and pepsin in solutions of urea and other amides. J Biol Chem 123:543–575. https://doi.org/10.1111/j.1469-185X.1938.tb00514.x

    Article  CAS  Google Scholar 

  32. Zhang JG, Lu JW, Su EZ (2019) Soluble recombinant pyruvate oxidase production in Escherichia coli can be enhanced and inclusion bodies minimized by avoiding pH stress. J Chem Technol Biot 94:2661–2670. https://doi.org/10.1002/jctb.6075

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Development Program of China [Grant No. 2017YFD0500601]; National Natural Science Foundation of China [Grant No. 31701719]; the Fundamental Research Funds for the Central Universities [Grant No. DUT20LK29].

Author information

Authors and Affiliations

Authors

Contributions

Hong Zhao, Lili Wang, Yongping Xu and Xiaoyu Li conceptualized and designed the experiments. Hong Zhao, Gen Li and Haofei Zhao performed the experiments and acquired the data. Hong Zhao compiled the results and wrote the manuscript. Hong Zhao and Lili Wang improvised the manuscript.

Corresponding author

Correspondence to Lili Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research Involving Human and/or Animal Participants

The manuscript dose not contain experiments using animals. The manuscript does not contain human studies.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Xu, Y., Li, X. et al. Expression and Purification of a Recombinant Enterotoxin Protein Using Different E. coli Host Strains and Expression Vectors. Protein J 40, 245–254 (2021). https://doi.org/10.1007/s10930-021-09973-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-021-09973-w

Keywords

Navigation