Skip to main content

Advertisement

Log in

Mechanism-based mathematical modeling of combined gemcitabine and birinapant in pancreatic cancer cells

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Combination chemotherapy is standard treatment for pancreatic cancer. However, current drugs lack efficacy for most patients, and selection and evaluation of new combination regimens is empirical and time-consuming. The efficacy of gemcitabine, a standard-of-care agent, combined with birinapant, a pro-apoptotic antagonist of Inhibitor of Apoptosis Proteins (IAPs), was investigated in pancreatic cancer cells. PANC-1 cells were treated with vehicle, gemcitabine (6, 10, 20 nM), birinapant (50, 200, 500 nM), and combinations of the two drugs. Temporal changes in cell numbers, cell cycle distribution, and apoptosis were measured. A basic pharmacodynamic (PD) model based on cell numbers, and a mechanism-based PD model integrating all measurements, were developed. The basic PD model indicated that synergistic effects occurred in both cell proliferation and death processes. The mechanism-based model captured key features of drug action: temporary cell cycle arrest in S phase induced by gemcitabine alone, apoptosis induced by birinapant alone, and prolonged cell cycle arrest and enhanced apoptosis induced by the combination. A drug interaction term Ψ was employed in the models to signify interactions of the combination when data were limited. When more experimental information was utilized, Ψ values approaching 1 indicated that specific mechanisms of interactions were captured better. PD modeling identified the potential benefit of combining gemcitabine and birinapant, and characterized the key interaction pathways. An optimal treatment schedule of pretreatment with gemcitabine for 24–48 h was suggested based on model predictions and was verified experimentally. This approach provides a generalizable modeling platform for exploring combinations of cytostatic and cytotoxic agents in cancer cell culture studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29. doi:10.3322/caac.21208

    Article  PubMed  Google Scholar 

  2. Melisi D, Calvetti L, Frizziero M, Tortora G (2014) Pancreatic cancer: systemic combination therapies for a heterogeneous disease. Curr Pharm Des 20:6660–6669. doi:10.2174/1381612820666140826154327

    Article  CAS  PubMed  Google Scholar 

  3. Burris HA, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, Nelson R, Dorr FA, Stephens CD, Von Hoff DD (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15:2403–2413

    CAS  PubMed  Google Scholar 

  4. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, Harris M, Reni M, Dowden S, Laheru D, Bahary N, Ramanathan RK, Tabernero J, Hidalgo M, Goldstein D, Van Cutsem E, Wei X, Iglesias J, Renschler MF (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. New Engl J Med 369:1691–1703. doi:10.1056/NEJMoa1304369

    Article  Google Scholar 

  5. Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, Adenis A, Raoul J-L, Gourgou-Bourgade S, de la Fouchardière C, Bennouna J, Bachet J-B, Khemissa-Akouz F, Péré-Vergé D, Delbaldo C, Assenat E, Chauffert B, Michel P, Montoto-Grillot C, Ducreux M (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. New Engl J Med 364:1817–1825. doi:10.1056/NEJMoa1011923

    Article  CAS  PubMed  Google Scholar 

  6. Jones S, Zhang X, Parsons DW, Lin JC-H, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong S, Fu B, Lin M, Calhoun ES, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith DR, Hidalgo M, Leach SD, Klein AP, Jaffee EM, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman JR, Kern SE, Hruban RH, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806. doi:10.1126/science.1164368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Long J, Zhang Y, Yu X, Yang J, LeBrun DG, Chen C, Yao Q, Li M (2011) Overcoming drug resistance in pancreatic cancer. Expert Opin Ther Targets 15:817–828. doi:10.1517/14728222.2011.566216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Wong A, Soo RA, Yong W-P, Innocenti F (2009) Clinical pharmacology and pharmacogenetics of gemcitabine. Drug Metab Rev 41:77–88. doi:10.1080/03602530902741828

    Article  CAS  PubMed  Google Scholar 

  9. Karnitz LM, Flatten KS, Wagner JM, Loegering D, Hackbarth JS, Arlander SJH, Vroman BT, Thomas MB, Baek Y-U, Hopkins KM, Lieberman HB, Chen J, Cliby WA, Kaufmann SH (2005) Gemcitabine-induced activation of checkpoint signaling pathways that affect tumor cell survival. Mol Pharmacol 68:1636–1644. doi:10.1124/mol.105.012716

    CAS  PubMed  Google Scholar 

  10. Vermeulen K, Van Bockstaele DR, Berneman ZN (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36:131–149. doi:10.1046/j.1365-2184.2003.00266.x

    Article  CAS  PubMed  Google Scholar 

  11. Yoshida K, Miki Y (2004) Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci 95:866–871. doi:10.1111/j.1349-7006.2004.tb02195.x

    Article  CAS  PubMed  Google Scholar 

  12. Hill R, Rabb M, Madureira PA, Clements D, Gujar SA, Waisman DM, Giacomantonio CA, Lee PWK (2013) Gemcitabine-mediated tumour regression and p53-dependent gene expression: implications for colon and pancreatic cancer therapy. Cell Death Dis 4:e791. doi:10.1038/cddis.2013.307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Gesto DS, Cerqueira NMFSA, Fernandes PA, Ramos MJ (2012) Gemcitabine: a critical nucleoside for cancer therapy. Curr Med Chem 19:1076–1087. doi:10.2174/092986712799320682

    Article  CAS  PubMed  Google Scholar 

  14. Voutsadakis IA (2011) Molecular predictors of gemcitabine response in pancreatic cancer. World J Gastrointest Oncol 3:153–164. doi:10.4251/wjgo.v3.i11.153

    Article  PubMed Central  PubMed  Google Scholar 

  15. Lopes RB, Gangeswaran R, McNeish IA, Wang Y, Lemoine NR (2007) Expression of the IAP protein family is dysregulated in pancreatic cancer cells and is important for resistance to chemotherapy. Int J Cancer 120:2344–2352. doi:10.1002/ijc.22554

    Article  CAS  PubMed  Google Scholar 

  16. Esposito I, Kleeff J, Abiatari I, Shi X, Giese N, Bergmann F, Roth W, Friess H, Schirmacher P (2007) Overexpression of cellular inhibitor of apoptosis protein 2 is an early event in the progression of pancreatic cancer. J Clin Pathol 60:885–895. doi:10.1136/jcp.2006.038257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Fulda S, Vucic D (2012) Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov 11:109–124. doi:10.1038/nrd3627

    Article  CAS  PubMed  Google Scholar 

  18. Gyrd-Hansen M, Meier P (2010) IAPs: from caspase inhibitors to modulators of NF-κB, inflammation and cancer. Nat Rev Cancer 10:561–574. doi:10.1038/nrc2889

    Article  CAS  PubMed  Google Scholar 

  19. Condon SM, Mitsuuchi Y, Deng Y, LaPorte MG, Rippin SR, Haimowitz T, Alexander MD, Kumar PT, Hendi MS, Lee Y-H, Benetatos CA, Yu G, Kapoor GS, Neiman E, Seipel ME, Burns JM, Graham MA, McKinlay MA, Li X, Wang J, Shi Y, Feltham R, Bettjeman B, Cumming MH, Vince JE, Khan N, Silke J, Day CL, Chunduru SK (2014) Birinapant, a smac-mimetic with improved tolerability for the treatment of solid tumors and hematological malignancies. J Med Chem 57:3666–3677. doi:10.1021/jm500176w

    Article  CAS  PubMed  Google Scholar 

  20. Benetatos CA, Mitsuuchi Y, Burns JM, Neiman EM, Condon SM, Yu G, Seipel ME, Kapoor GS, Laporte MG, Rippin SR, Deng Y, Hendi MS, Tirunahari PK, Lee Y-H, Haimowitz T, Alexander MD, Graham MA, Weng D, Shi Y, McKinlay MA, Chunduru SK (2014) Birinapant (TL32711), a bivalent SMAC mimetic, targets TRAF2-associated cIAPs, abrogates TNF-induced NF-κB activation, and is active in patient-derived xenograft models. Mol Cancer Ther 13:867–879. doi:10.1158/1535-7163.MCT-13-0798

    Article  CAS  PubMed  Google Scholar 

  21. Dineen SP, Roland CL, Greer R, Carbon JG, Toombs JE, Gupta P, Bardeesy N, Sun H, Williams N, Minna JD, Brekken RA (2010) Smac mimetic increases chemotherapy response and improves survival in mice with pancreatic cancer. Cancer Res 70:2852–2861. doi:10.1158/0008-5472.CAN-09-3892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Probst BL, Liu L, Ramesh V, Li L, Sun H, Minna JD, Wang L (2010) Smac mimetics increase cancer cell response to chemotherapeutics in a TNF-α-dependent manner. Cell Death Differ 17:1645–1654. doi:10.1038/cdd.2010.44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Stadel D, Cristofanon S, Abhari BA, Deshayes K, Zobel K, Vucic D, Debatin K-M, Fulda S (2011) Requirement of nuclear factor κB for Smac mimetic-mediated sensitization of pancreatic carcinoma cells for gemcitabine-induced apoptosis. Neoplasia 13:1162–1170. doi:10.1593/neo.11460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ariens EJ, Van Rossum JM, Simonis AM (1957) Affinity, intrinsic activity and drug interactions. Pharmacol Rev 9:218–236

    CAS  PubMed  Google Scholar 

  25. Chakraborty A, Jusko WJ (2002) Pharmacodynamic interaction of recombinant human interleukin-10 and prednisolone using in vitro whole blood lymphocyte proliferation. J Pharm Sci 91(5):1334–1342

    Article  CAS  PubMed  Google Scholar 

  26. Harrold JM, Straubinger RM, Mager DE (2012) Combinatorial chemotherapeutic efficacy in non-Hodgkin lymphoma can be predicted by a signaling model of CD20 pharmacodynamics. Cancer Res 72:1632–1641. doi:10.1158/0008-5472.CAN-11-2432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Fitzgerald JB, Schoeberl B, Nielsen UB, Sorger PK (2006) Systems biology and combination therapy in the quest for clinical efficacy. Nat Chem Biol 2:458–466. doi:10.1038/nchembio817

    Article  CAS  PubMed  Google Scholar 

  28. Au JL, Kumar RR, Li D, Wientjes MG (1999) Kinetics of hallmark biochemical changes in paclitaxel-induced apoptosis. AAPS PharmSci 1:E8. doi:10.1208/ps010308

    Article  CAS  PubMed  Google Scholar 

  29. Lawrence TS, Davis MA, Hough A, Rehemtulla A (2001) The role of apoptosis in 2′,2′-difluoro-2′-deoxycytidine (Gemcitabine)-mediated radiosensitization. Clin Cancer Res 7:314–319

    CAS  PubMed  Google Scholar 

  30. Ait-Oudhia S, Straubinger RM, Mager DE (2013) Systems pharmacological analysis of paclitaxel-mediated tumor priming that enhances nanocarrier deposition and efficacy. J Pharmacol Exp Ther 344:103–112. doi:10.1124/jpet.112.199109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Lobo ED, Balthasar JP (2002) Pharmacodynamic modeling of chemotherapeutic effects: application of a transit compartment model to characterize methotrexate effects in vitro. AAPS PharmSci 4:E42. doi:10.1208/ps040442

    Article  PubMed  Google Scholar 

  32. Pawaskar DK, Straubinger RM, Fetterly GJ, Ma WW, Jusko WJ (2013) Interactions of everolimus and sorafenib in pancreatic cancer cells. AAPS J 15:78–84. doi:10.1208/s12248-012-9417-7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Koch G, Walz A, Lahu G, Schropp J (2009) Modeling of tumor growth and anticancer effects of combination therapy. J Pharmacokinet Pharmacodyn 36:179–197. doi:10.1007/s10928-009-9117-9

    Article  CAS  PubMed  Google Scholar 

  34. Hamed SS, Straubinger RM, Jusko WJ (2013) Pharmacodynamic modeling of cell cycle and apoptotic effects of gemcitabine on pancreatic adenocarcinoma cells. Cancer Chemother Pharmacol 72:553–563. doi:10.1007/s00280-013-2226-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Modiano JF, Ritt MG, Wojcieszyn J, Smith R (1999) Growth arrest of melanoma cells is differentially regulated by contact inhibition and serum deprivation. DNA Cell Biol 18:357–367. doi:10.1089/104454999315259

    Article  CAS  PubMed  Google Scholar 

  36. Hayes O, Ramos B, Rodríguez LL, Aguilar A, Badía T, Castro FO (2005) Cell confluency is as efficient as serum starvation for inducing arrest in the G0/G1 phase of the cell cycle in granulosa and fibroblast cells of cattle. Anim Reprod Sci 87:181–192. doi:10.1016/j.anireprosci.2004.11.011

    Article  CAS  PubMed  Google Scholar 

  37. Cappella P, Tomasoni D, Faretta M, Lupi M, Montalenti F, Viale F, Banzato F, D’Incalci M, Ubezio P (2001) Cell cycle effects of gemcitabine. Int J Cancer 93:401–408. doi:10.1002/ijc.1351

    Article  CAS  PubMed  Google Scholar 

  38. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241. doi:10.1038/nrm2312

    Article  CAS  PubMed  Google Scholar 

  39. D’Argenio DZ, Schumitzky A, Wang X (2009) ADAPT 5 user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Biomedical Simulations Resource, Los Angeles

    Google Scholar 

  40. Battaglia MA, Parker RS (2011) Pharmacokinetic/pharmacodynamic modelling of intracellular gemcitabine triphosphate accumulation: translating in vitro to in vivo. IET Syst Biol 5:34. doi:10.1049/iet-syb.2009.0073

    Article  CAS  PubMed  Google Scholar 

  41. Zhang L, Sinha V, Forgue ST, Callies S, Ni L, Peck R, Allerheiligen SRB (2006) Model-based drug development: the road to quantitative pharmacology. J Pharmacokinet Pharmacodyn 33:369–393. doi:10.1007/s10928-006-9010-8

    Article  CAS  PubMed  Google Scholar 

  42. Heinemann V, Xu YZ, Chubb S, Sen A, Hertel LW, Grindey GB, Plunkett W (1992) Cellular elimination of 2′,2′-difluorodeoxycytidine 5′-triphosphate: a mechanism of self-potentiation. Cancer Res 52:533–539

    CAS  PubMed  Google Scholar 

  43. Amaravadi R, Schilder R, Dy G, Ma W, Fetterly G, Weng D, Graham M, Burns J, Chunduru S, Condon S, McKinlay M, Adjei A (2011) Phase 1 study of the Smac mimetic TL32711 in adult subjects with advanced solid tumors & lymphoma to evaluate safety, pharmacokinetics pharmacodynamics and anti-tumor activity. Poster session presented at: 102nd Annual Meeting of the American Association

  44. Bocci G, Danesi R, Marangoni G, Fioravanti A, Boggi U, Esposito I, Fasciani A, Boschi E, Campani D, Bevilacqua G, Mosca F, Del Tacca M (2004) Antiangiogenic versus cytotoxic therapeutic approaches to human pancreas cancer: an experimental study with a vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor and gemcitabine. Eur J Pharmacol 498:9–18. doi:10.1016/j.ejphar.2004.07.062

    Article  CAS  PubMed  Google Scholar 

  45. Buchsbaum DJ, Bonner JA, Grizzle WE, Stackhouse MA, Carpenter M, Hicklin DJ, Bohlen P, Raisch KP (2002) Treatment of pancreatic cancer xenografts with Erbitux (IMC-C225) anti-EGFR antibody, gemcitabine, and radiation. Int J Radiat Oncol Biol Phys 54:1180–1193. doi:10.1016/S0360-3016(02)03788-4

    Article  CAS  PubMed  Google Scholar 

  46. Jin H-S, Lee TH (2006) Cell cycle-dependent expression of cIAP2 at G2/M phase contributes to survival during mitotic cell cycle arrest. Biochem J 399:335–342. doi:10.1042/BJ20060612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Samuel T, Okada K, Hyer M, Welsh K, Zapata JM, Reed JC (2005) cIAP1 Localizes to the nuclear compartment and modulates the cell cycle. Cancer Res 65:210–218

    CAS  PubMed  Google Scholar 

  48. Wang H, Tan S, Wang X, Liu D, Yu C, Bai Z, He D, Zhao J (2007) Silencing livin gene by siRNA leads to apoptosis induction, cell cycle arrest, and proliferation inhibition in malignant melanoma LiBr cells. Acta Pharmacol Sin 28:1968–1974. doi:10.1111/j.1745-7254.2007.00724.x

    Article  CAS  PubMed  Google Scholar 

  49. Cao Z, Zhang R, Li J, Huang H, Zhang D, Zhang J, Gao J, Chen J, Huang C (2013) X-linked inhibitor of apoptosis protein (XIAP) regulation of cyclin D1 protein expression and cancer cell anchorage-independent growth via its E3 ligase-mediated protein phosphatase 2A/c-Jun axis. J Biol Chem 288:20238–20247. doi:10.1074/jbc.M112.448365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Karin M, Cao Y, Greten FR, Li Z-W (2002) NF-κB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310. doi:10.1038/nrc780

    Article  CAS  PubMed  Google Scholar 

  51. Volcic M, Karl S, Baumann B, Salles D, Daniel P, Fulda S, Wiesmüller L (2012) NF-κB regulates DNA double-strand break repair in conjunction with BRCA1-CtIP complexes. Nucleic Acids Res 40:181–195. doi:10.1093/nar/gkr687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Wu Z-H, Miyamoto S (2008) Induction of a pro-apoptotic ATM-NF-κB pathway and its repression by ATR in response to replication stress. EMBO J 27:1963–1973. doi:10.1038/emboj.2008.127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Marivin A, Berthelet J, Plenchette S, Dubrez L (2012) The inhibitor of apoptosis (IAPs) in adaptive response to cellular stress. Cells 1:711–737. doi:10.3390/cells1040711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Hung SW, Mody HR, Govindarajan R (2012) Overcoming nucleoside analog chemoresistance of pancreatic cancer: a therapeutic challenge. Cancer Lett 320:138–149. doi:10.1016/j.canlet.2012.03.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, Frese KK, Denicola G, Feig C, Combs C, Winter SP, Ireland-Zecchini H, Reichelt S, Howat WJ, Chang A, Dhara M, Wang L, Rückert F, Grützmann R, Pilarsky C, Izeradjene K, Hingorani SR, Huang P, Davies SE, Plunkett W, Egorin M, Hruban RH, Whitebread N, McGovern K, Adams J, Iacobuzio-Donahue C, Griffiths J, Tuveson DA (2009) Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324:1457–1461. doi:10.1126/science.1171362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Lieber M, Mazzetta J, Nelson-Rees W, Kaplan M, Todaro G (1975) Establishment of a continuous tumor-cell line (panc-1) from a human carcinoma of the exocrine pancreas. Int J Cancer 15:741–747

    Article  CAS  PubMed  Google Scholar 

  57. McIntyre LJ, Kim YS (1984) Effects of sodium butyrate and dimethylsulfoxide on human pancreatic tumor cell lines. Eur J Cancer Clin Oncol 20:265–271

    Article  CAS  PubMed  Google Scholar 

  58. Okada G, Watanabe H, Ohtsubo K, Mouri H, Yamaguchi Y, Motoo Y, Sawabu N (2012) Multiple factors influencing the release of hTERT mRNA from pancreatic cancer cell lines in in vitro culture. Cell Biol Int 36:545–553. doi:10.1042/CBI20090471

    Article  CAS  PubMed  Google Scholar 

  59. Simeoni M, Magni P, Cammia C, De Nicolao G, Croci V, Pesenti E, Germani M, Poggesi I, Rocchetti M (2004) Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res 64:1094–1101. doi:10.1158/0008-5472.CAN-03-2524

    Article  CAS  PubMed  Google Scholar 

  60. Nakashima M, Adachi S, Yasuda I, Yamauchi T, Kawaguchi J, Itani M, Yoshioka T, Matsushima-Nishiwaki R, Hirose Y, Kozawa O, Moriwaki H (2011) Phosphorylation status of heat shock protein 27 plays a key role in gemcitabine-induced apoptosis of pancreatic cancer cells. Cancer Lett 313:218–225. doi:10.1016/j.canlet.2011.09.008

    Article  CAS  PubMed  Google Scholar 

  61. Oliveras-Ferraros C, Vazquez-Martin A, Colomer R, De Llorens R, Brunet J, Menendez JA (2008) Sequence-dependent synergism and antagonism between paclitaxel and gemcitabine in breast cancer cells: the importance of scheduling. Int J Oncol 32:113–120

    CAS  PubMed  Google Scholar 

  62. Arlt A, Gehrz A, Müerköster S, Vorndamm J, Kruse M-L, Fölsch UR, Schäfer H (2003) Role of NF-κB and Akt/PI3 K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene 22:3243–3251. doi:10.1038/sj.onc.1206390

    Article  CAS  PubMed  Google Scholar 

  63. Kunnumakkara AB, Guha S, Krishnan S, Diagaradjane P, Gelovani J, Aggarwal BB (2007) Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-κB-regulated gene products. Cancer Res 67:3853–3861. doi:10.1158/0008-5472.CAN-06-4257

    Article  CAS  PubMed  Google Scholar 

  64. Zabludoff SD, Deng C, Grondine MR, Sheehy AM, Ashwell S, Caleb BL, Green S, Haye HR, Horn CL, Janetka JW, Liu D, Mouchet E, Ready S, Rosenthal JL, Queva C, Schwartz GK, Taylor KJ, Tse AN, Walker GE, White AM (2008) AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol Cancer Ther 7:2955–2966. doi:10.1158/1535-7163.MCT-08-0492

    Article  CAS  PubMed  Google Scholar 

  65. Montano R, Thompson R, Chung I, Hou H, Khan N, Eastman A (2013) Sensitization of human cancer cells to gemcitabine by the Chk1 inhibitor MK-8776: cell cycle perturbation and impact of administration schedule in vitro and in vivo. BMC Cancer 13:604. doi:10.1186/1471-2407-13-604

    Article  PubMed Central  PubMed  Google Scholar 

  66. Levy G (1966) Kinetics of pharmacologic effects. Clin Pharm Ther 7(3):362

    CAS  Google Scholar 

  67. Nagashima R, O’Reilly RA, Levy G (1969) Kinetics of pharmacologic effects in man: the anticoagulant action of warfarin. Clin Pharm Ther 10(1):22

    CAS  Google Scholar 

  68. Jusko WJ (1971) Pharmacodynamics of chemotherapeutic effects: Dose-time-response relationships for phase-nonspecific agents. J Pharm Sci 60:892–895

    Article  CAS  PubMed  Google Scholar 

  69. Jusko WJ (1973) A pharmacodynamic model for cell-cycle-specific chemotherapeutic agents. J Pharmacokin Biopharm 1(3):175–200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Nancy Pyszczynski for excellent technical assistance and the Department of Flow Cytometry at Roswell Park Cancer Institute for technical consulting. We also thank Gilbert Koch for his suggestions in model development and manuscript revision. We are grateful to TetraLogic Pharmaceuticals Inc. for providing birinapant. This work was supported by Grants GM57980 and GM24211 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Jusko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 345 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Straubinger, R.M. & Jusko, W.J. Mechanism-based mathematical modeling of combined gemcitabine and birinapant in pancreatic cancer cells. J Pharmacokinet Pharmacodyn 42, 477–496 (2015). https://doi.org/10.1007/s10928-015-9429-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-015-9429-x

Keywords

Navigation