Skip to main content

Advertisement

Log in

Mechanical Properties of 3D-Printed Lattice Cylindrical Structure with Recyclable Elastomeric and Thermoplastic Polymers

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Lattice structures are well known for their high strength-to-weight ratio and energy absorption. The mechanical properties of these lattices depend upon the geometrical configurations and these properties could be altered by change in design. The current work aims to study the effect of material and lattice cells on static and dynamic mechanical properties of lattice cylinders. For the combined study of the material and structural effect, both materials need to be far different. Due to this, the lattice cylinder was fabricated with thermoplastic polylactic acid (PLA) and an elastomeric thermoplastic polyester elastomer (TPEE). Before this study, these two dramatically different polymers using lattice cylinders had never been compared in a single study. Material extrusion (MEX) 3D-printing was used for manufacturing. Static compression tests, combined with digital image correlation (DIC), were utilized to analyze compression characteristics and deformation modes, and the results were validated through finite element method (FEM) analysis. From the results, due to the same lattice structure, the cylinders of both polymers exhibited similar densification strains as PLA and TPEE, 52.7% and 53.9%, respectively. Due to material effects, the energy absorption per unit volume (EA) of the two lattice cylinder structures is 200.90 and 3260 kJ/m3, respectively. The interlayer adhesion of materials is critical in determining the failure mode and compression behavior of a structure. PLA structural delamination causes the lattice holes to collapse, while TPEE fails due to the collapse of the connection holes. The lattice structure dominates the dynamic elastic recovery (DER) and Tan δ results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Shen L, Wei K, Yuan K et al (2022) A novel metamaterial incorporating both auxeticity and thermal shrinkage. Int J Mech Sci 233:107650. https://doi.org/10.1016/j.ijmecsci.2022.107650

    Article  Google Scholar 

  2. Palma G, Mao H, Burghignoli L et al (2018) Acoustic metamaterials in aeronautics. Appl Sci 8:1–18. https://doi.org/10.3390/app8060971

    Article  Google Scholar 

  3. Wegst UGK, Bai H, Saiz E et al (2015) Bioinspired structural materials. Nat Mater 14:23–36. https://doi.org/10.1038/nmat4089

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Grima JN, Caruana-Gauci R (2012) Mechanical metamaterials: materials that push back. Nat Mater 11:565–566. https://doi.org/10.1038/nmat3364

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Kumar R, Kumar M, Chohan JS, Kumar S (2022) Overview on metamaterial: history, types and applications. Mater Today Proc 56:3016–3024. https://doi.org/10.1016/j.matpr.2021.11.423

    Article  CAS  Google Scholar 

  6. Park JH, Lee JC (2019) Peculiar elastic behavior of mechanical metamaterials with various minimal surfaces. Sci Rep 9:1–7. https://doi.org/10.1038/s41598-019-38660-1

    Article  CAS  Google Scholar 

  7. Wei K, Peng Y, Wang K et al (2018) Three dimensional lightweight lattice structures with large positive, zero and negative thermal expansion. Compos Struct 188:287–296. https://doi.org/10.1016/j.compstruct.2018.01.030

    Article  Google Scholar 

  8. Fang D, Zhang Y (2021) Mechanical metamaterials: advanced designs and manufacture. Curr Opin Solid State Mater Sci 25:100934. https://doi.org/10.1016/j.cossms.2021.100934

    Article  ADS  Google Scholar 

  9. Zhang K, Qi L, Zhao P et al (2023) Buckling induced negative stiffness mechanical metamaterial for bandgap tuning. Compos Struct 304:116421. https://doi.org/10.1016/j.compstruct.2022.116421

    Article  Google Scholar 

  10. Kumar AP, Ma Q (2023) Evaluation of energy absorption enhancement of additively manufactured polymer composite lattice structures. Funct Compos Struct 5:15005. https://doi.org/10.1088/2631-6331/acc0d0

    Article  ADS  Google Scholar 

  11. Zheng X, Uto K, Hu WH et al (2022) Reprogrammable flexible mechanical metamaterials. Appl Mater Today 29:101662. https://doi.org/10.1016/j.apmt.2022.101662

    Article  Google Scholar 

  12. Xin L, Siyuan Y, Harry L et al (2020) Topological mechanical metamaterials: a brief review. Curr Opin Solid State Mater Sci. https://doi.org/10.1016/j.cossms.2020.100853

    Article  Google Scholar 

  13. Giri TR, Mailen R (2021) Controlled snapping sequence and energy absorption in multistable mechanical metamaterial cylinders. Int J Mech Sci 204:106541. https://doi.org/10.1016/j.ijmecsci.2021.106541

    Article  Google Scholar 

  14. Chen L, Zhang J, Du B et al (2018) Dynamic crushing behavior and energy absorption of graded lattice cylindrical structure under axial impact load. Thin Walled Struct 127:333–343. https://doi.org/10.1016/j.tws.2017.10.048

    Article  Google Scholar 

  15. Zhu H, Wang P, Wei D et al (2022) Energy absorption of diamond lattice cylindrical shells under axial compression loading. Thin Walled Struct 181:110131. https://doi.org/10.1016/j.tws.2022.110131

    Article  Google Scholar 

  16. Bruson D, Galati M, Calignano F, Iuliano L (2023) Mechanical characterisation and simulation of the tensile behaviour of polymeric additively manufactured lattice structures. Exp Mech 63:1117–1133. https://doi.org/10.1007/s11340-023-00976-5

    Article  Google Scholar 

  17. Vasques CMA, Gonçalves FC, Cavadas AMS (2021) Manufacturing and testing of 3D-printed polymer isogrid lattice cylindrical shell structures. Eng Proc. https://doi.org/10.3390/ASEC2021-11174

    Article  Google Scholar 

  18. Arsentev MY, Sysoev EI, Makogon AI et al (2023) High-throughput screening of 3D-printed architected materials inspired by crystal lattices: procedure, challenges, and mechanical properties. ACS Omega 8:24865–24874. https://doi.org/10.1021/acsomega.3c00874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo Y, Zhang J, Chen L et al (2020) Deformation behaviors and energy absorption of auxetic lattice cylindrical structures under axial crushing load. Aerosp Sci Technol 98:105662. https://doi.org/10.1016/j.ast.2019.105662

    Article  Google Scholar 

  20. Okubo S, Yamauchi Y, Kitazono K (2023) Effects of random and controlled irregularity in strut lattice structure of PA12 on compression anisotropy. Addit Manuf 63:103385. https://doi.org/10.1016/j.addma.2022.103385

    Article  CAS  Google Scholar 

  21. Sood M, Wu CM (2023) Influence of 3D printed structures on energy absorption ability of brittle polymers under dynamic cyclic loading. Express Polym Lett 17:390–405. https://doi.org/10.3144/expresspolymlett.2023.28

    Article  CAS  Google Scholar 

  22. Loh GH, Pei E, Harrison D, Monzón MD (2018) An overview of functionally graded additive manufacturing. Addit Manuf 23:34–44. https://doi.org/10.1016/j.addma.2018.06.023

    Article  CAS  Google Scholar 

  23. Isquierdo DV, Siqueira RHM, Carvalho SM, Lima MSF (2022) Effect of the initial substrate temperature on heat transfer and related phenomena in austenitic stainless steel parts fabricated by additive manufacturing using direct energy deposition. J Mater Res Technol 18:5267–5279. https://doi.org/10.1016/j.jmrt.2022.04.143

    Article  CAS  Google Scholar 

  24. Teng C, Pal D, Gong H et al (2017) A review of defect modeling in laser material processing. Addit Manuf 14:137–147. https://doi.org/10.1016/j.addma.2016.10.009

    Article  Google Scholar 

  25. Shah UB, Kapania RK (2020) Failure of hexagonal and triangular honeycomb core sandwich panels. AIAA J 58:4923–4940. https://doi.org/10.2514/1.J059461

    Article  ADS  Google Scholar 

  26. Rao Y, Wei N, Yao S et al (2021) A process–structure–performance modeling for thermoplastic polymers via material extrusion additive manufacturing. Addit Manuf 39:101857. https://doi.org/10.1016/j.addma.2021.101857

    Article  CAS  Google Scholar 

  27. Rosso S, Meneghello R, Biasetto L et al (2020) In-depth comparison of polyamide 12 parts manufactured by Multi Jet Fusion and Selective Laser Sintering. Addit Manuf 36:101713. https://doi.org/10.1016/j.addma.2020.101713

    Article  CAS  Google Scholar 

  28. Polyzos E, Ravindranath SB, Van Hemelrijck D, Pyl L (2021) Analytical and numerical modeling of voids in additively manufactured thermoplastic parts. Addit Manuf 48:102356. https://doi.org/10.1016/j.addma.2021.102356

    Article  CAS  Google Scholar 

  29. Yuan S, Li J, Yao X et al (2020) Intelligent optimization system for powder bed fusion of processable thermoplastics. Addit Manuf 34:101182. https://doi.org/10.1016/j.addma.2020.101182

    Article  CAS  Google Scholar 

  30. Guarnera D, Carrera E, Hansen CJ, Maiarù M (2021) Mechanical characterization of 3D printed mimic of human artery affected by atherosclerotic plaque through numerical and experimental methods. Biomech Model Mechanobiol 20:1969–1980. https://doi.org/10.1007/s10237-021-01487-9

    Article  PubMed  Google Scholar 

  31. Bhagia S, Bornani K, Agarwal R et al (2021) Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries. Appl Mater Today. https://doi.org/10.1016/j.apmt.2021.101078

    Article  Google Scholar 

  32. Zappino E, Filippi M, Pagani A et al (2020) Experimental and numerical analysis of 3D printed open-hole plates reinforced with carbon fibers. Composites C 2:100007. https://doi.org/10.1016/j.jcomc.2020.100007

    Article  CAS  Google Scholar 

  33. Lim DD, Park J, Lee J et al (2022) Broadband mechanical metamaterial absorber enabled by fused filament fabrication 3D printing. Addit Manuf 55:102856. https://doi.org/10.1016/j.addma.2022.102856

    Article  CAS  Google Scholar 

  34. Heller BP, Smith DE, Jack DA (2016) Effects of extrudate swell and nozzle geometry on fiber orientation in Fused Filament Fabrication nozzle flow. Addit Manuf 12:252–264. https://doi.org/10.1016/j.addma.2016.06.005

    Article  CAS  Google Scholar 

  35. Ma Q, Rejab MRM, Kumar AP et al (2021) Effect of infill pattern, density and material type of 3D printed cubic structure under quasi-static loading. Proc Inst Mech Eng C 235:4254–4272. https://doi.org/10.1177/0954406220971667

    Article  Google Scholar 

  36. Hirai T, Yagi K, Nakai K et al (2021) Transparent thermoplastic composite from a refractive index-adjustable polymer blend. Composites B 225:109258. https://doi.org/10.1016/j.compositesb.2021.109258

    Article  CAS  Google Scholar 

  37. Schönhoff LM, Mayinger F, Eichberger M et al (2021) 3D printing of dental restorations: mechanical properties of thermoplastic polymer materials. J Mech Behav Biomed Mater. https://doi.org/10.1016/j.jmbbm.2021.104544

    Article  PubMed  Google Scholar 

  38. Told R, Ujfalusi Z, Pentek A et al (2022) A state-of-the-art guide to the sterilization of thermoplastic polymers and resin materials used in the additive manufacturing of medical devices. Mater Des 223:111119. https://doi.org/10.1016/j.matdes.2022.111119

    Article  CAS  Google Scholar 

  39. Coggin JM, Schetz JA, Newton CM, Kapania RK, Howard DP, Chung H (2014) Fabrication and characterization of 3-D printed heat flux sensors for advanced wind tunnel models and improved CFD validation. In: AIAA atmospheric flight mechanics conference, 2014, pp 1–12

  40. Khoo PS, Hassan SA, Ilyas RA et al (2023) Compressive behaviour of tin slag polymer concrete confined with glass fibre reinforced epoxy under various loading speeds. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.04.141

    Article  Google Scholar 

  41. Chu J, Zhou Y, Cai Y et al (2022) Life-cycle greenhouse gas emissions and the associated carbon-peak strategies for PS, PVC, and ABS plastics in China. Resour Conserv Recycl 182:106295. https://doi.org/10.1016/j.resconrec.2022.106295

    Article  CAS  Google Scholar 

  42. Dwivedi P, Mishra PK, Mondal MK, Srivastava N (2019) Non-biodegradable polymeric waste pyrolysis for energy recovery. Heliyon 5:e02198. https://doi.org/10.1016/j.heliyon.2019.e02198

    Article  PubMed  PubMed Central  Google Scholar 

  43. Moetazedian A, Gleadall A, Han X et al (2021) Mechanical performance of 3D printed polylactide during degradation. Addit Manuf 38:101764. https://doi.org/10.1016/j.addma.2020.101764

    Article  CAS  Google Scholar 

  44. Amiri-Rad A, Hütter M, Govaert LE, van Dommelen JAW (2021) Improved associated flow rule for anisotropic viscoplasticity in thermoplastic polymer systems. Mech Mater 163:104087. https://doi.org/10.1016/j.mechmat.2021.104087

    Article  Google Scholar 

  45. Shen F, Kang G, Lam YC et al (2019) Thermo-elastic-viscoplastic-damage model for self-heating and mechanical behavior of thermoplastic polymers. Int J Plast 121:227–243. https://doi.org/10.1016/j.ijplas.2019.06.003

    Article  CAS  Google Scholar 

  46. Wang K, Engelbrecht K, Bahl CRH (2023) Additive manufactured thermoplastic elastomers for low-stress driven elastocaloric cooling. Appl Mater Today 30:101711. https://doi.org/10.1016/j.apmt.2022.101711

    Article  Google Scholar 

  47. Cao L, Xiao J, Kim JK, Zhang X (2023) Effect of post-process treatments on mechanical properties and surface characteristics of 3D printed short glass fiber reinforced PLA/TPU using the FDM process. CIRP J Manuf Sci Technol 41:135–143. https://doi.org/10.1016/j.cirpj.2022.12.008

    Article  Google Scholar 

  48. Cao Y, Lai S, Wu W et al (2023) Design and mechanical evaluation of additively-manufactured graded TPMS lattices with biodegradable polymer composites. J Mater Res Technol 23:2868–2880. https://doi.org/10.1016/j.jmrt.2023.01.221

    Article  CAS  Google Scholar 

  49. Boubakri A, Haddar N, Elleuch K, Bienvenu Y (2011) Influence of thermal aging on tensile and creep behavior of thermoplastic polyurethane. C R Mec 339:666–673. https://doi.org/10.1016/j.crme.2011.07.003

    Article  ADS  CAS  Google Scholar 

  50. Prajapati MJ, Kumar A, Lin S-C, Jeng J-Y (2023) Reducing mechanical anisotropy in material extrusion process using bioinspired architectured lattice structures. Addit Manuf 66:103480. https://doi.org/10.1016/j.addma.2023.103480

    Article  Google Scholar 

  51. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  52. Boubakri A, Haddar N, Elleuch K, Bienvenu Y (2010) Impact of aging conditions on mechanical properties of thermoplastic polyurethane. Mater Des 31:4194–4201. https://doi.org/10.1016/j.matdes.2010.04.023

    Article  CAS  Google Scholar 

  53. Masmoudi M, Elleuch K (2012) The effect of time and aging temperature on thermoplastic polyurethane elastomers wear behavior. In: First international conference on materials and environment durability, 2012, pp 22–25

  54. Boubakri A, Guermazi N, Elleuch K, Ayedi HF (2010) Study of UV-aging of thermoplastic polyurethane material. Mater Sci Eng A 527:1649–1654. https://doi.org/10.1016/j.msea.2010.01.014

    Article  CAS  Google Scholar 

  55. Bhat C, Kumar A, Lin SC, Jeng JY (2023) Design, fabrication, and properties evaluation of novel nested lattice structures. Addit Manuf 68:103510. https://doi.org/10.1016/j.addma.2023.103510

    Article  Google Scholar 

  56. Guetta O, Rittel D (2021) Hyperelastic modeling of solid methyl cellulose hydrogel under quasi-static compression. J Mech Behav Biomed Mater 124:104857. https://doi.org/10.1016/j.jmbbm.2021.104857

    Article  CAS  PubMed  Google Scholar 

  57. Kim S, Shin H, Rhim S, Rhee KY (2019) Calibration of hyperelastic and hyperfoam constitutive models for an indentation event of rigid polyurethane foam. Composites B 163:297–302. https://doi.org/10.1016/j.compositesb.2018.11.045

    Article  CAS  Google Scholar 

  58. Montella G, Calabrese A, Serino G (2014) Mechanical characterization of a Tire Derived Material: Experiments, hyperelastic modeling and numerical validation. Constr Build Mater 66:336–347. https://doi.org/10.1016/j.conbuildmat.2014.05.078

    Article  Google Scholar 

  59. Wang X, Qin R, Zhang X, Chen B (2023) Quasi-static and dynamic behavior of additively manufactured metamaterial structures with layered-hybrid topologies. Thin Walled Struct 183:110434. https://doi.org/10.1016/j.tws.2022.110434

    Article  Google Scholar 

  60. Bhat C, Kumar A, Jeng JY (2021) Effect of atomic tessellations on structural and functional properties of additive manufactured lattice structures. Addit Manuf 47:102326. https://doi.org/10.1016/j.addma.2021.102326

    Article  CAS  Google Scholar 

  61. Choudhry NK, Panda B, Kumar S (2022) In-plane energy absorption characteristics of a modified re-entrant auxetic structure fabricated via 3D printing. Composites B 228:109437. https://doi.org/10.1016/j.compositesb.2021.109437

    Article  Google Scholar 

  62. Ufodike CO, Ahmed MF, Dolzyk G (2021) Additively manufactured biomorphic cellular structures inspired by wood microstructure. J Mech Behav Biomed Mater 123:104729. https://doi.org/10.1016/j.jmbbm.2021.104729

    Article  CAS  PubMed  Google Scholar 

  63. Zhang P, Qi D, Xue R et al (2021) Mechanical design and energy absorption performances of rational gradient lattice metamaterials. Compos Struct 277:114606. https://doi.org/10.1016/j.compstruct.2021.114606

    Article  Google Scholar 

  64. Al-Salloum YA (2007) Influence of edge sharpness on the strength of square concrete columns confined with FRP composite laminates. Composites B 38:640–650. https://doi.org/10.1016/j.compositesb.2006.06.019

    Article  Google Scholar 

  65. Wang LM, Wu YF (2008) Effect of corner radius on the performance of CFRP-confined square concrete columns: test. Eng Struct 30:493–505. https://doi.org/10.1016/j.engstruct.2007.04.016

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the National Science and Technology Council of Taiwan, ROC, for financially supporting part of this study under Contract Number NSTC 112-2622-E-011-011.

Funding

A part of this study was financially supported by the National Science and Technology Council of Taiwan, ROC, under Contract Number NSTC 112-2622-E-011-011.

Author information

Authors and Affiliations

Authors

Contributions

Mohit Sood: Investigation, Methodology, Writing—review and editing. Chang-Mou Wu: Conceptualization, Supervision, Writing—review and editing. Yun-Cheng Yang: Experiment and analysis.

Corresponding author

Correspondence to Chang-Mou Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

There are no ethical issues involved in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1022 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sood, M., Wu, CM. & Yang, YC. Mechanical Properties of 3D-Printed Lattice Cylindrical Structure with Recyclable Elastomeric and Thermoplastic Polymers. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03203-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03203-x

Keywords

Navigation