Skip to main content

Advertisement

Log in

Fabrication and Characterization of 3D-printed Antibacterial Bioactive Glass /Polycaprolactone Nanocomposite Scaffolds

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, three-dimensional polycaprolactone (PCL)-based scaffolds with controlled pore architecture were fabricated from sol-gel-derived bioactive glass containing 2% mol Ag (BAG) via robocasting technique. This method was implemented due to its advantageous features, including its high reproducibility, versatility in shapes and sizes, and customizability. The Taguchi method was employed to determine the experimental parameters for preparing optimized printable BAG /PCL nanocomposite inks, with five groups of printable inks. The printed scaffolds were characterized by scanning electron microscopy, simultaneous thermal analysis, Fourier transforms infrared spectroscopy and X-ray diffraction. The heat-treated BAG nanopowder at 550 °C exhibited an average particle size diameter of less than 15 nm with a homogenous silver distribution without any additional phase. Based on SEM images of BAG /PCL nanocomposite scaffolds, the regularity of printed structure depends on the weight% of powder and PCL. The BAG75P30 and BAG65P50 with 65 and 75%wt of BAG powder possessed the best regular structures (microscopic rods and also the well-designed macropores, lumen about 500 μm) with higher porosity (61–64%). All the fabricated scaffolds provided acceptable cell viability according to the MTT assay. The cells cultured on BAG75P30, BAG65P40, and BAG65P50 showed the highest ALP activity compared to other groups. Also, these three groups represented significant antibacterial properties among the groups. The 3D-printed BAG /PCL nanocomposite scaffolds with macro and micropores in the structure can be a promising candidate for bone tissue engineering to promote tissue restoration due to their structure and also antibacterial properties resulting from silver in the composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Bahremandi Tolou N, Salimijazi H, Dikonimos T, Faggio G, Messina G, Tamburrano A, Aurora A, Lisi N (2021) Fabrication of 3D monolithic graphene foam/polycaprolactone porous nanocomposites for bioapplications. J Mater Sci 56:5581–5594. https://doi.org/10.1007/s10853-020-05596-1

    Article  ADS  CAS  Google Scholar 

  2. Soni R, Kumar NV, Chameettachal S, Pati F, Narayan Rath S (2019) Synthesis and optimization of PCL-bioactive glass composite scaffold for bone tissue engineering. Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.05.008

    Article  Google Scholar 

  3. Koons GL, Diba M, Mikos AG (2020) Materials design for bone-tissue engineering. Nat Rev Mater 5:584–603. https://doi.org/10.1038/s41578-020-0204-2

    Article  ADS  CAS  Google Scholar 

  4. Baino F, Hamzehlou S, Kargozar S (2018) Bioactive glasses: where are we and where are we going? J Funct Biomater 9:25. https://doi.org/10.3390/jfb9010025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Imran Z (2012) Bioactive glass: a material for the future. World J Dentistry 3:199–201. https://doi.org/10.5005/jp-journals-10015-1156

    Article  Google Scholar 

  6. Crabtree JH, Burchette RJ, Siddiqi RA, Huen IT, Hadnott LL, Fishman A (2003) The efficacy of silver-ion implanted catheters in reducing peritoneal dialysis-related infections. Perit Dial Int 23:368–374

    Article  PubMed  CAS  Google Scholar 

  7. Miola M, Verné E, Vitale-Brovarone C, Baino F (2016) Antibacterial Bioglass-Derived scaffolds: innovative synthesis Approach and characterization. Int J Appl Glass Sci 7:238–247. https://doi.org/10.1111/ijag.12209

    Article  CAS  Google Scholar 

  8. Solgi S, Khakbiz M, Shahrezaee M, Zamanian A, Tahriri M, Keshtkari S, Raz M, Khoshroo K, Moghadas S, Rajabnejad A (2017) Synthesis, characterization and in Vitro Biological evaluation of Sol-gel derived Sr-containing Nano Bioactive Glass. Silicon 9:535–542. https://doi.org/10.1007/s12633-015-9291-x

    Article  CAS  Google Scholar 

  9. Vulpoi A, Baia L, Simon S, Simon V (2012) Silver effect on the structure of SiO2-CaO-P2O5 ternary system. Mater Sci Engineering: C 32:178–183. https://doi.org/10.1016/j.msec.2011.10.015

    Article  CAS  Google Scholar 

  10. Eqtesadi S, Motealleh A, Pajares A, Guiberteau F, Miranda P (2016) Improving mechanical properties of 13–93 bioactive glass robocast scaffold by poly (lactic acid) and poly (ε-caprolactone) melt infiltration. J Non Cryst Solids 432:111–119. https://doi.org/10.1016/j.jnoncrysol.2015.02.025

    Article  ADS  CAS  Google Scholar 

  11. Distler T, Fournier N, Grünewald A, Polley C, Seitz H, Detsch R, Boccaccini AR (2020) Polymer-bioactive glass composite filaments for 3D scaffold manufacturing by fused deposition modeling: fabrication and characterization. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.00552

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fathi A, Kermani F, Behnamghader A, Banijamali S, Mozafari M, Baino F, Kargozar S (2020) Three-dimensionally printed polycaprolactone/multicomponent bioactive glass scaffolds for potential application in bone tissue engineering. Biomedical Glasses 6:57–69. https://doi.org/10.1515/bglass-2020-0006

    Article  Google Scholar 

  13. Martínez-Vázquez FJ, Perera FH, Miranda P, Pajares A, Guiberteau F (2010) Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Acta Biomater 6:4361–4368. https://doi.org/10.1016/j.actbio.2010.05.024

    Article  PubMed  CAS  Google Scholar 

  14. Kim YB, Lim JY, Yang GH, Seo JH, Ryu HS, Kim GH (2019) 3D-printed PCL/bioglass (BGS-7) composite scaffolds with high toughness and cell-responses for bone tissue regeneration. J Ind Eng Chem 79:163–171. https://doi.org/10.1016/j.jiec.2019.06.027

    Article  CAS  Google Scholar 

  15. Rahaman MN, Xiao W, Huang W (2018) Bioactive glass composites for bone and musculoskeletal tissue engineering, in: Bioactive Glasses, Elsevier, : pp. 285–336. https://doi.org/10.1016/B978-0-08-100936-9.00013-7

  16. Zhang Y, Yu W, Ba Z, Cui S, Wei J, Li H (2018) 3D-printed scaffolds of mesoporous bioglass/gliadin/polycaprolactone ternary composite for enhancement of compressive strength, degradability, cell responses and new bone tissue ingrowth. Int J Nanomed Volume 13:5433–5447. https://doi.org/10.2147/IJN.S164869

    Article  CAS  Google Scholar 

  17. Lewis JA, Smay JE, Stuecker J, Cesarano J (2006) Direct ink writing of three-dimensional ceramic structures. J Am Ceram Soc 89:3599–3609. https://doi.org/10.1111/j.1551-2916.2006.01382.x

    Article  CAS  Google Scholar 

  18. Michna S, Wu W, Lewis JA (2005) Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Biomaterials 26:5632–5639. https://doi.org/10.1016/j.biomaterials.2005.02.040

    Article  PubMed  CAS  Google Scholar 

  19. Wang C, Huang W, Zhou Y, He L, He Z, Chen Z, He X, Tian S, Liao J, Lu B, Wei Y, Wang M (2020) 3D printing of bone tissue engineering scaffolds. Bioact Mater 5:82–91. https://doi.org/10.1016/j.bioactmat.2020.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  20. Iranmanesh P, Ehsani A, Khademi A, Asefnejad A, Shahriari S, Soleimani M, Ghadiri Nejad M, Saber-Samandari S, Khandan A (2022) Application of 3D bioprinters for Dental Pulp Regeneration and tissue Engineering (porous architecture). Transp Porous Media 142:265–293. https://doi.org/10.1007/s11242-021-01618-x

    Article  CAS  Google Scholar 

  21. Karimi M, Asefnejad A, Aflaki D, Surendar A, Baharifar H, Saber-Samandari S, Khandan A, Khan A, Toghraie D (2021) Fabrication of shapeless scaffolds reinforced with baghdadite-magnetite nanoparticles using a 3D printer and freeze-drying technique. J Mater Res Technol 14:3070–3079. https://doi.org/10.1016/j.jmrt.2021.08.084

    Article  CAS  Google Scholar 

  22. Grémare A, Guduric V, Bareille R, Heroguez V, Latour S, L’heureux N, Fricain JC, Catros S, Nihouannen D (2018) Characterization of printed PLA scaffolds for bone tissue engineering. J Biomed Mater Res A. https://doi.org/10.1002/jbm.a.36289

    Article  PubMed  Google Scholar 

  23. Sahrapeyma H, Asefnejad A, Azami M, Sadroddiny E (2021) Fabrication of fibrous poly (ɛ-caprolactone) nano‐fibers containing cerium doped‐bioglasses nanoparticles encapsulated collagen. J Appl Polym Sci 138:51202. https://doi.org/10.1002/app.51202

    Article  CAS  Google Scholar 

  24. Karimi Z, Seyedjafari E, Mahdavi FS, Hashemi SM, Khojasteh A, Kazemi B, Mohammadi-Yeganeh S (2019) Baghdadite nanoparticle-coated poly l-lactic acid (PLLA) ceramics scaffold improved osteogenic differentiation of adipose tissue-derived mesenchymal stem cells. J Biomed Mater Res A 107:1284–1293. https://doi.org/10.1002/jbm.a.36638

    Article  PubMed  CAS  Google Scholar 

  25. Aminian A, Fathi A, Gerami MH, Arsan M, Mirhosseini AF, Torabizadeh SA (2022) Nanoparticles to overcome bacterial resistance in orthopedic and dental implants. Nanomed Res J 7:107–123. https://doi.org/10.22034/nmrj.2022.02.001

    Article  CAS  Google Scholar 

  26. Elomaa L, Kokkari A, Närhi T, Seppälä Jv (2013) Porous 3D modeled scaffolds of bioactive glass and photocrosslinkable poly(ε-caprolactone) by stereolithography. Compos Sci Technol 74:99–106. https://doi.org/10.1016/j.compscitech.2012.10.014

    Article  CAS  Google Scholar 

  27. Fazeli N, Arefian E, Irani S, Ardeshirylajimi A, Seyedjafari E (2021) 3D-Printed PCL scaffolds coated with Nanobioceramics Enhance Osteogenic differentiation of stem cells. ACS Omega 6:35284–35296. https://doi.org/10.1021/acsomega.1c04015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Mondal S, Nguyen TP, Pham VH, Hoang G, Manivasagan P, Kim MH, Nam SY, Oh J (2020) Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Ceram Int 46:3443–3455. https://doi.org/10.1016/j.ceramint.2019.10.057

    Article  CAS  Google Scholar 

  29. Bhargav A, Min K, Wen Feng L, Fuh JYH, Rosa V (2020) Taguchi’s methods to optimize the properties and bioactivity of 3D printed polycaprolactone/mineral trioxide aggregate scaffold: theoretical predictions and experimental validation. J Biomed Mater Res B Appl Biomater 108:629–637. https://doi.org/10.1002/jbm.b.34417

    Article  PubMed  CAS  Google Scholar 

  30. Jones JR, Ehrenfried LM, Hench LL (2006) Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27:964–973. https://doi.org/10.1016/j.biomaterials.2005.07.017

    Article  PubMed  CAS  Google Scholar 

  31. Vallet-Regí M, Román J, Padilla S, Doadrio JC, Gil FJ (2005) Bioactivity and mechanical properties of SiO 2 –CaO–P 2 O 5 glass-ceramics. J Mater Chem 15:1353–1359. https://doi.org/10.1039/B415134H

    Article  Google Scholar 

  32. Prabhu M, Kavitha K, Suriyaprabha R, Manivasakan P, Rajendran V, Kulandaivelu P (2013) Preparation and characterization of Silver-Doped nanobioactive glass particles and their  in vitro behaviour for biomedical applications. J Nanosci Nanotechnol 13:5327–5339. https://doi.org/10.1166/jnn.2013.7474

    Article  PubMed  CAS  Google Scholar 

  33. Vulpoi A, Gruian C, Vanea E, Baia L, Simon S, Steinhoff H-J, Göller G, Simon V (2012) Bioactivity and protein attachment onto bioactive glasses containing silver nanoparticles. J Biomed Mater Res A 100A:1179–1186. https://doi.org/10.1002/jbm.a.34060

    Article  CAS  Google Scholar 

  34. Motealleh A, Eqtesadi S, Perera FH, Pajares A, Guiberteau F, Miranda P (2016) Understanding the role of dip-coating process parameters in the mechanical performance of polymer-coated bioglass robocast scaffolds. J Mech Behav Biomed Mater 64:253–261. https://doi.org/10.1016/j.jmbbm.2016.08.004

    Article  PubMed  CAS  Google Scholar 

  35. Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF (2010) Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 70:1764–1776. https://doi.org/10.1016/j.compscitech.2010.06.002

    Article  CAS  Google Scholar 

  36. Dziadek M, Menaszek E, Zagrajczuk B, Pawlik J, Cholewa-Kowalska K (2015) New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: part I. Material properties. Mater Sci Engineering: C 56:9–21. https://doi.org/10.1016/j.msec.2015.06.020

    Article  CAS  Google Scholar 

  37. Heydari S, Asefnejad A, Hassanzadeh Nemati N, Goodarzi V, Vaziri A (2022) Fabrication of multicomponent cellulose/polypyrrole composed with zinc oxide nanoparticles for improving mechanical and biological properties. React Funct Polym 170:105126. https://doi.org/10.1016/j.reactfunctpolym.2021.105126

    Article  CAS  Google Scholar 

  38. Rich J, Jaakkola T, Tirri T, Närhi T, Yli-Urpo A, Seppälä J (2002) In vitro evaluation of poly(ε-caprolactone-co-DL-lactide)/bioactive glass composites. Biomaterials 23:2143–2150. https://doi.org/10.1016/S0142-9612(01)00345-3

    Article  PubMed  CAS  Google Scholar 

  39. Yazdimamaghani M, Vashaee D, Assefa S, Walker KJ, Madihally SV, Köhler GA, Tayebi L (2014) Hybrid Macroporous Gelatin/Bioactive-Glass/Nanosilver scaffolds with controlled degradation behavior and antimicrobial activity for bone tissue Engineering. J Biomed Nanotechnol 10:911–931. https://doi.org/10.1166/jbn.2014.1783

    Article  PubMed  CAS  Google Scholar 

  40. Bejarano J, Boccaccini AR, Covarrubias C, Palza H (2020) Effect of Cu- and Zn-Doped bioactive glasses on the in vitro Bioactivity, mechanical and degradation behavior of biodegradable PDLLA scaffolds. Materials 13:2908. https://doi.org/10.3390/ma13132908

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  41. Petretta M, Gambardella A, Boi M, Berni M, Cavallo C, Marchiori G, Maltarello MC, Bellucci D, Fini M, Baldini N, Grigolo B, Cannillo V (2021) Composite Scaffolds for Bone Tissue Regeneration Based on PCL and Mg-Containing Bioactive Glasses. Biology  https://doi.org/10.3390/biology10050398

    Article  PubMed  PubMed Central  Google Scholar 

  42. Abidi A, Jokar Z, Allahyari S, Kolahi Sadigh F, Mohammad Sajadi S, Firouzi P, Baleanu D, Ghaemi F, Karimipour A (2021) Improve thermal performance of Simulated-Body-Fluid as a solution with an ion concentration close to human blood plasma, by additive zinc oxide and its composites: ZnO/Carbon Nanotube and ZnO/Hydroxyapatite. J Mol Liq 342:117457. https://doi.org/10.1016/j.molliq.2021.117457

    Article  CAS  Google Scholar 

  43. Chouzouri G, Xanthos M (2007) In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers. Acta Biomater 3:745–756. https://doi.org/10.1016/j.actbio.2007.01.005

    Article  PubMed  CAS  Google Scholar 

  44. Ji L, Wang W, Jin D, Zhou S, Song X (2015) In vitro bioactivity and mechanical properties of bioactive glass nanoparticles/polycaprolactone composites. Mater Sci Engineering: C 46:1–9. https://doi.org/10.1016/j.msec.2014.09.041

    Article  CAS  Google Scholar 

  45. Jaakkola T, Rich J, Tirri T, Närhi T, Jokinen M, Seppälä J (2004) Yli-Urpo, in vitro Ca-P precipitation on biodegradable thermoplastic composite of poly(ε-caprolactone-co-dl-lactide) and bioactive glass (S53P4). Biomaterials 25:575–581. https://doi.org/10.1016/S0142-9612(03)00558-1

    Article  PubMed  CAS  Google Scholar 

  46. Meretoja Vv, Tirri T, Malin M, Seppälä Jv, Närhi TO (2014) Enhanced osteogenicity of Bioactive composites with Biomimetic Treatment. Biomed Res Int 2014:1–8. https://doi.org/10.1155/2014/207676

    Article  CAS  Google Scholar 

  47. Cannillo V, Chiellini F, Fabbri P, Sola A (2010) Production of Bioglass® 45S5 – polycaprolactone composite scaffolds via salt-leaching. Compos Struct 92:1823–1832. https://doi.org/10.1016/j.compstruct.2010.01.017

    Article  Google Scholar 

  48. Malekahmadi O, Kalantar M, Nouri-Khezrabad M (2021) Effect of carbon nanotubes on the thermal conductivity enhancement of synthesized hydroxyapatite filled with water for dental applications: experimental characterization and numerical study. J Therm Anal Calorim 144:2109–2126. https://doi.org/10.1007/s10973-021-10593-w

    Article  CAS  Google Scholar 

  49. Chang YY, Huang HL, Chen YC, Hsu JT, Shieh TM, Tsai MT (2014) Biological characteristics of the MG-63 human osteosarcoma cells on composite tantalum carbide/amorphous carbon films. PLoS ONE. https://doi.org/10.1371/journal.pone.0095590

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ben-Arfa B.A.E., Neto A.S., Miranda Salvado I.M., Pullar R.C., Ferreira J.M.F. (2019) Robocasting: prediction of ink printability in solgel bioactive glass. J Am Ceram Soc 102:1608–1618. https://doi.org/10.1111/jace.16092

    Article  CAS  Google Scholar 

  51. Chakraborty R, Anoop AG, Thakur A, Mohanta GC, Kumar P (2023) Strategies to modify the Surface and Bulk properties of 3D-Printed solid scaffolds for tissue Engineering Applications. ACS Omega 8:5139–5156. https://doi.org/10.1021/acsomega.2c05984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Vaquette C, Ivanovski S, Hamlet SM, Hutmacher DW (2013) Effect of culture conditions and calcium phosphate coating on ectopic bone formation. Biomaterials 34:5538–5551. https://doi.org/10.1016/j.biomaterials.2013.03.088

    Article  PubMed  CAS  Google Scholar 

  53. Saito E, Suarez-Gonzalez D, Murphy WL, Hollister SJ (2015) Biomineral Coating increases bone formation by Ex vivo BMP-7 gene therapy in Rapid Prototyped Poly(< scp > l -lactic acid) (PLLA) and poly(ε-caprolactone) (PCL) porous scaffolds. Adv Healthc Mater 4:621–632. https://doi.org/10.1002/adhm.201400424

    Article  PubMed  CAS  Google Scholar 

  54. Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01831

    Article  PubMed  PubMed Central  Google Scholar 

  55. Augustine R, Malik HN, Singhal DK, Mukherjee A, Malakar D, Kalarikkal N, Thomas S (2014) Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. J Polym Res 21:347. https://doi.org/10.1007/s10965-013-0347-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Azadeh Motealleh, Dr. Siamak Eqtesadi, and Dr. Fidel Hugo Perera from department of mechanical engineering, university of Exrtremadura for their generous help in this study.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

ZG and MK: Conceptualization, methodology, validation, formal analysis and writing—Original draft. MR and SAP: Conceptualization, methodology, validation, writing—review and editing. PM: methodology and formal analysis.

Corresponding author

Correspondence to Mehdi Kalantar.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golniya, Z., Kalantar, M., Poursamar, S.A. et al. Fabrication and Characterization of 3D-printed Antibacterial Bioactive Glass /Polycaprolactone Nanocomposite Scaffolds. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03202-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03202-y

Keywords

Navigation