Skip to main content
Log in

Development of an Electrochemical Immunosensor Based on Multi-functional Carboxylated Multiwalled Carbon Nanotube–Silver Nanoparticles-Chitosan Film for Rapid Determination of Ractopamine

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A porous electrochemical immunosensor was fabricated for the sensitive determination of ractopamine (RAC) based on a cMWCNT–Ag–CS matrix film with a working bare screen-printed carbon electrode (SPCE). At the same time, the amine groups of chitosan interacted with the cMWCNT and silver nanoparticles, which was examined in detail by XPS. Cyclic voltammetry (CV) was employed to investigate the electrochemical characteristics of the immunosensor. Under optimal conditions, the logarithmic value of CRAC was positively correlated with the △Ipa of the RAC immunosensor, from 0.01 to 100 ng mL−1 (correlation coefficient R2 = 0.998). The limit of detection (LOD, 3σ) was 0.001 ng mL−1. The relative standard deviation (RSD) for Ipa current was 3.78%. These results suggested that the cMWCNT–Ag–CS matrix film provides a microenvironment beneficial for the coupling probability of anti-RAC, promotes electron transfer, and improves the sensitivity of the immunosensor. This strategy based on a cMWCNT–Ag–CS substrate may offer a new approach for the sensitive and selective detection of other lean meat powders via only changing the corresponding antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. He L, Guo C, Yn S, Zhang S, Wang M, Peng D, Fang S, Zhang Z, Liu CS (2017) Chitosan stabilized gold nanoparticle based electrochemical ractopamine immunoassay. Microchim Acta 184:2919–2924

    Article  CAS  Google Scholar 

  2. Qi S, Zhao B, Zhou B, Jiang X (2017) An electrochemical immunosensor based on pristine graphene for rapid determination of ractopamine. Chem Phys Lett 685:146–150

    Article  CAS  Google Scholar 

  3. Wu J, Nair MN, Suman SP, Li S, Luo X, Beach CM, Bohrer BM, Boler DD (2017) Ractopamine-induced changes in sarcoplasmic proteome profile of post-rigor pork semimembranosus muscle. S Afr J Anim Sci 47:640–647

    Article  CAS  Google Scholar 

  4. Yang S, Yang R, He J, Zhang Y, Yuan Y, Yue T, Sheng Q (2023) Au Nanoparticles functionalized covalent-organic-framework-based electrochemical sensor for sensitive detection of ractopamine. Foods 12:842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu H, Ousmane D, Gan N, Wu D, Li T (2017) Novel Stir Bar Array Sorptive extraction coupled with gas chromatography-mass spectrometry for simultaneous determination of three β2-agonist residues in Pork. Chromatographia 80:473–482

    Article  CAS  Google Scholar 

  6. Ayotte C, Couture M, Lalonde K, Charlebois A (2022) Presence of β2-agonist growth promoters in human urine samples: GC-MS/MS evaluation of the excretion profiles of ractopamine administered in microdoses. Drug Test Anal 14:1825–1835

    Article  CAS  PubMed  Google Scholar 

  7. Chang KC, Chang YT, Tsai CE (2018) Determination of ractopamine and salbutamol in pig hair by liquid chromatography tandem mass spectrometry. J Food Drug Anal 26:725–730

    Article  CAS  PubMed  Google Scholar 

  8. Zhang L, Jia Q, Liao G, Qian Y, Qiu J (2022) A fast method for the simultaneous analysis of 26 beta-agonists in swine muscle with a multi-functional filter by ultra-high performance liquid chromatography-tandem mass spectrometry. Separations 9:121

    Article  CAS  Google Scholar 

  9. Wang Z, Zhou Q, Guo Y, Hu H, Zheng Z, Li S, Wang Y, Ma Y (2021) Rapid detection of ractopamine and salbutamol in swine urine by immunochromatography based on selenium nanoparticles. Int J Nanomed 16:2059–2070

    Article  Google Scholar 

  10. Li Y, Liu M, Kong Y, Guo L, Yu X, Yu W, Shen J, Wen K, Wang Z (2022) Significantly improved detection performances of immunoassay for ractopamine in urine based on highly urea-tolerant rabbit monoclonal antibody. Food Chem Toxicol 168:113358

    Article  CAS  PubMed  Google Scholar 

  11. Keerthi M, Panda AK, Wang YH, Liu X, He JH, Chung RJ (2022) Titanium nanoparticle anchored functionalized MWCNTs for electrochemical detection of ractopamine in porcine samples with ultrahigh sensitivity. Food Chem 378:132083

    Article  CAS  PubMed  Google Scholar 

  12. Li K, Cui J, Yang Q, Wang S, Luo R, Rodas-Gonzalez A, Wei P, Liu L (2023) A new sensor for the rapid electrochemical detection of ractopamine in meats with high sensitivity. Food Chem 405:134791

    Article  CAS  PubMed  Google Scholar 

  13. Mahmoud R, Akram V (2016) Voltammetric immunosensor for human chorionic gonadotropin using a glassy carbon electrode modified with silver nanoparticles and a nanocomposite composed of graphene, chitosan and ionic liquid, and using riboflavin as a redox probe. Microchim Acta 183:845–853

    Article  Google Scholar 

  14. Mahmoud R, Mahsa G, Faezeh SF (2021) Fabrication of an electrochemical biodevice for ractopamine detection under a strategy of a double recognition of the aptamer/molecular imprinting polymer. Bioelectrochemistry 138:107722

    Article  Google Scholar 

  15. Mahmoud R, Mahsa G, Faezeh SF, Reza S, Ehsan S (2021) AgNPs/QDs@GQDs nanocomposites developed as an ultrasensitive impedimetric aptasensor for ractopamine detection. Mater Sci Eng C 108:100507

    Google Scholar 

  16. Gu C, Ren P, Zhang F, Zhao G, Shen J, Zhao B (2020) Detection of six β agonists by three multiresidue immunosensors based on an anti-bovine serum albumin-ractopamine-clenbuterolsalbutamol antibody. ACS Omega 5:5548–5555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen J, Cheng G, Wu K, Deng A, Li J (2020) Sensitive and specific detection of ractopamine: an electrochemiluminescence immunosensing strategy fabricated by trimetallic Au@Pd@Pt nanoparticles and triangular gold nanosheets. Electrochim Acta 361:137061

    Article  CAS  Google Scholar 

  18. Durmus C, Hanoglu SB, Harmanci D, Moulahoum H, Tok K, Ghorbanizamani F, Sanli S, Zihnioglu F, Evran S, Cicek C, Sertoz R, Arda B, Goksel T, Turhan K, Timur S (2022) Indiscriminate SARS-CoV-2 multivariant detection using magnetic nanoparticle-based electrochemical immunosensing. Talanta 243:123356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Calcaterra A, Polli F, Lamelza L, Plato CD, Cammarone S, Ghirga F, Botta B, Mazzei F, Quaglio D (2023) Resorc[4]arene-modified gold-decorated magnetic nanoparticles for immunosensor development. Bioconjugate Chem 34:529–537

    Article  CAS  Google Scholar 

  20. Karaboğa MNS, Sezgintürk MK (2021) Chapter 10—Electrochemical immunosensors based on quantum dots. Micro Nano Technol 341–377

  21. Jeong B, Akter R, Oh J, Lee DG, Ahn CG, Choi JS, Rahman MDA (2022) Novel electrochemical PMI marker biosensor based on quantum dot dissolution using a double label strategy. Sci Rep 12:8815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Beck F, Horn C, Baeumner AJ (2022) Ag nanoparticles outperform Au nanoparticles for the use as label in electrochemical point-of-care sensor. Anal Bioanal Chem 414:475–483

    Article  CAS  PubMed  Google Scholar 

  23. Shaikh MO, Srikanth B, Zhu PY, Chuang CH (2019) Impedimetric immunosensor utilizing polyaniline/gold nanocomposite-modified screen-printed electrodes for early detection of chronic kidney disease. Sensors 19:3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Suhaimi NF, Baharin SNA, Jamion NA, Zain ZM, Sambasevam KP (2023) Polyaniline-chitosan modified on screen-printed carbon electrode for the electrochemical detection of perfluorooctanoic acid. Microchem J 188:108502

    Article  CAS  Google Scholar 

  25. Thunkhamrak C, Chuntib P, Ounnunkad K, Banet P, Aubert PH, Saianand G, Gopalan AI, Jakmunee J (2020) Highly sensitive voltammetric immunosensor for the detection of prostate specific antigen based on silver nanoprobe assisted graphene oxide modified screen printed carbon electrode. Talanta 208:120389

    Article  CAS  PubMed  Google Scholar 

  26. Shao B, Ai Y, Yan L, Wang B, Huang Y, Zou Q, Fu H, Niu X, Sun W (2023) Wireless electrochemical sensor for the detection of phytoregulator indole-3-acetic acid using gold nanoparticles and three-dimensional reduced graphene oxide modified screen printed carbon electrode. Talanta 253:124030

    Article  CAS  Google Scholar 

  27. Viet NX, Hoan NX, Takamura Y (2019) Development of highly sensitive electrochemical immunosensor based on single-walled carbon nanotube modified screen-printed carbon electrode. Mater Chem Phys 227:123–129

    Article  Google Scholar 

  28. Filik H, Avan AA, Puntar NA, Özyürek M, Güngör ZB, Kucur M, Kamış H, Dicle DA (2021) Ethylenediamine grafted carbon nanotube aerogels modified screen-printed electrode for simultaneous electrochemical immunoassay of multiple tumor markers. J Electroanal Chem 900:115700

    Article  CAS  Google Scholar 

  29. Gomes RS, Gomez-Rodríguez BA, Fernandes R, Sales MGF, Moreira FTC, Dutra RF (2021) Plastic antibody of polypyrrole/multiwall carbon nanotubes on screen-printed electrodes for cystatin C detection. Biosensors 11:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang WC, Wu KH, Hung HC, Wang JC, Chang SC (2018) Magnetic nanoparticle-based lateral flow immunochromatographic strip as a reporter for rapid detection of melamine. J Nanosci Nanotechnol 18:7190–7196

    Article  CAS  PubMed  Google Scholar 

  31. Zhu S, Cao Y, Xu Y, Yin Y, Li G (2013) An exonuclease III protection-based electrochemical method for estrogen receptor assay. Int J Mol Sci 14:10298–10306

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu Y, Song R, Zhang X, Zhang D (2020) Enhanced antimicrobial activity and pH-responsive sustained release of chitosan/poly (vinyl alcohol)/graphene oxide nanofibrous membrane loading with allicin. Int J Biol Macromol 161:1405–1413

    Article  CAS  PubMed  Google Scholar 

  33. Rao H, Liu Y, Zhong J, Zhang Z, Zhao X, Liu X, Jiang Y, Zou P, Wang X, Wang Y (2017) Gold nanoparticle/Chitosan@N, S Co-doped multiwalled carbon nanotubes sensor: fabrication, characterization, and electrochemical detection of catechol and nitrite. ACS Sustain Chem Eng 5:10926–10939

    Article  CAS  Google Scholar 

  34. Singh V, Shrivastava A, Wahi N (2015) Biosynthesis of silver nanoparticles by plants crude extracts and their characterization using UV, XRD, TEM and EDX. Afr J Biotechnol 14:2554–2567

    Article  Google Scholar 

  35. Huang WC, Cheng KF, Shyu JY (2022) Flexible SERS substrate of silver nanoparticles on cotton swabs for rapid in situ detection of melamine. Nanoscale Adv 4:1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frattini A, Pellegri N, Nicastro D, de Sanctis O (2005) Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater Chem Phys 94:148–152

    Article  CAS  Google Scholar 

  37. Chang CS, Wu KH, Hsu CY (2022) Silver nanoparticles embedded cotton swab as surface-enhanced Raman scattering substrate combination of smartphone app for detection of carbofuran residues. Mater Express 12:98–105

    Article  CAS  Google Scholar 

  38. Azócar MI, Gómez G, Levín P, Paez M, Muñoz H, Dinamarca N (2014) REVIEW: antibacterial behavior of silver(I) complexes. J Coord Chem 67:3840–3853

    Article  Google Scholar 

  39. Park JW, Shumaker-Parry JS (2014) Structural study of citrate layers on gold nanoparticles: role of intermolecular interactions in stabilizing nanoparticles. J Am Chem Soc 136:1907–1921

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Y, Ma H, Wu D, Li Y, Du B, Wei Q (2015) Label-free immunosensor based on Au@Ag2S nanoparticles/magnetic chitosan matrix for sensitive determination of ractopamine. J Electroanal Chem 741:14–19

    Article  CAS  Google Scholar 

  41. Ansari AA, Sumana G, Pandey MK, Malhotra BD (2009) Sol-gel-derived titanium oxide–cerium oxide biocompatible nanocomposite film for urea sensor. J Mater Res 24:1667–1673

    Article  CAS  Google Scholar 

  42. Aydın EB, Aydın M, Sezgintürk MK (2021) A novel electrochemical immunosensor based on acetylene black/epoxy-substituted-polypyrrole polymer composite for the highly sensitive and selective detection of interleukin 6. Talanta 222:121596

    Article  PubMed  Google Scholar 

  43. Akazawa-Ogawa Y, Nagai H, Hagihara Y (2018) Heat denaturation of the antibody, a multi-domain protein. Biophys Rev 10:255–258

    Article  CAS  PubMed  Google Scholar 

  44. Ma M, Zhu P, Pi F, Ji J, Su X (2016) A disposable molecularly imprinted electrochemical sensor based on screen-printed electrode modified with ordered mesoporous carbon and gold nanoparticles for determination of ractopamin. J Electroanal Chem 775:171–178

    Article  CAS  Google Scholar 

  45. Poo-arporn Y, Pakapongpan S, Chanlek N, Poo-arporn RP (2019) The development of disposable electrochemical sensor based on Fe3O4-doped reduced graphene oxide modified magnetic screen-printed electrode for ractopamine determination in pork sample. Sens Actuators B 284:164–171

    Article  CAS  Google Scholar 

  46. Ma X, Lv H, Zhu Q, Chen M, Wang Y, Li F (2020) A novel sensitive electrochemical method for the detection of ractopamine in meat food via polycitrulline-modified electrode. Food Addit Contamin Part A 37:1459–1466

    Article  CAS  Google Scholar 

  47. Wu KH, Huang WC, Shyu RH, Chang SC (2020) Silver nanoparticle-base lateral flow immunoassay for rapid detection of Staphylococcal enterotoxin B in milk and honey. J Inorg Biochem 210:111163

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors thank the National Science and Technology Council for supporting this work. (MOST 110-2222-E-606-001).

Author information

Authors and Affiliations

Authors

Contributions

WCH: Conceptualization, Methodology, Investigation, Data curation, Analysis and interpretation of data, Writing-original draft, writing-review and edition. YNH: Acquisition of data.

Corresponding author

Correspondence to Wen-Chien Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, WC., Hsiung, YN. Development of an Electrochemical Immunosensor Based on Multi-functional Carboxylated Multiwalled Carbon Nanotube–Silver Nanoparticles-Chitosan Film for Rapid Determination of Ractopamine. J Polym Environ (2023). https://doi.org/10.1007/s10924-023-03088-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03088-2

Keywords

Navigation