Skip to main content
Log in

Porous Swellable Hypromellose Composite Fortified with Eucalyptus camaldulensis Leaf Hydrophobic/Hydrophilic Phenolic-rich Extract to Mitigate Dermal Wound Infections

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Contagious wound infection has become one of the most common challenges concomitants with the wounds, causing severe inflammatory responses, and ultimately delaying skin tissue regeneration. Herein, a phenolic-rich Eucalyptus camaldulensis leaf hydrophobic (ECG) and hydrophilic extract (ECY), in varied content was fortified within a hypromellose polymeric matrix was characterized, and further targeted as an effective antioxidative, antimicrobial, anti-inflammatory, and hemostasis dressing. Infrared spectroscopy and thermal analysis of ECG and ECY fortified composite indicated significant hydrogen bonding-based cross-linking, while scanning electron microscopy image showed a porous structure. The chromatography profiling demonstrated 0.022 ± 0.02 and 0.027 ± 0.01 µg/mg of quercetin for the ECG and ECY fortified composite, respectively. The antibacterial and antioxidant activity of extract incorporated composite was significantly (p < 0.001) higher than that of control. Biocompatibility results revealed that composites were compatible with > 80% viability of HaCaT and RAW 264.7 cells. The results of the blood-coagulation and clotting kinetics showed time and dose-dependent hemostasis. Eucalyptus camaldulensis leaf hydrophilic extract incorporated composite significantly (p < 0.001) attenuated the nitrite production against lipopolysaccharides-stimulated macrophage cells. Moreover, the HaCaT cell showed migration of 43.59 ± 1.26 (%) and 48.12 ± 1.85 (%) treated with ECG and ECY incorporated composite after 24 h, respectively. Overall, the hydrophilic extract-incorporated composites showed multifarious biological properties, suggesting their potential for comprehensive wound healing dressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All the relevant data and the materials are available in this article.

References

  1. Machado GHA, Marques TR, de Carvalho TCL, Duarte AC, de Oliveira FC, Gonçalves MC, Piccoli RH, Corrêa AD (2018) Antibacterial activity and in vivo wound healing potential of phenolic extracts from jaboticaba skin. Chem Biol Drug Des 92(1):1333–1343. https://doi.org/10.1111/cbdd.13198

    Article  CAS  PubMed  Google Scholar 

  2. Nwabor OF, Singh S, Paosen S, Vongkamjan K, Voravuthikunchai SP (2020) Enhancement of food shelf life with polyvinyl alcohol-chitosan nanocomposite films from bioactive Eucalyptus leaf extracts. Food Biosci 36:100609. https://doi.org/10.1016/j.fbio.2020.100609

    Article  CAS  Google Scholar 

  3. Yang D, Gong L, Li Q, Fan B, Ma C, He Y-C (2023) Preparation of a biobased polyelectrolyte complex from chitosan and sodium carboxymethyl cellulose and its antibacterial characteristics. Int J Biolog Macromol 227:524–534. https://doi.org/10.1016/j.ijbiomac.2022.12.089

    Article  CAS  Google Scholar 

  4. Herliana H, Yusuf HY, Laviana A, Wandawa G, Cahyanto A (2023) Characterization and analysis of chitosan-gelatin composite-based biomaterial effectivity as local hemostatic agent: a systematic review. Polymers 15(3):575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Singh S, Chunglok W, Nwabor OF, Ushir YV, Singh S, Panpipat W (2022) Hydrophilic biopolymer matrix antibacterial peel-off facial mask functionalized with biogenic nanostructured material for cosmeceutical applications. J Polym Environ 30(3):938–953. https://doi.org/10.1007/s10924-021-02249-5

    Article  CAS  Google Scholar 

  6. Jayeoye TJ, Eze FN, Singh S, Olatunde OO, Benjakul S, Rujiralai T (2021) Synthesis of gold nanoparticles/polyaniline boronic acid/sodium alginate aqueous nanocomposite based on chemical oxidative polymerization for biological applications. Int J Biol Macromol 179:196–205. https://doi.org/10.1016/j.ijbiomac.2021.02.199

    Article  CAS  PubMed  Google Scholar 

  7. Singh S, Nwabor OF, Syukri DM, Voravuthikunchai SP (2021) Chitosan-poly(vinyl alcohol) intelligent films fortified with anthocyanins isolated from Clitoria ternatea and Carissa carandas for monitoring beverage freshness. Int J Biol Macromol 182:1015–1025. https://doi.org/10.1016/j.ijbiomac.2021.04.027

    Article  CAS  PubMed  Google Scholar 

  8. Eze FN, Jayeoye TJ, Singh S (2022) Fabrication of intelligent pH-sensing films with antioxidant potential for monitoring shrimp freshness via the fortification of chitosan matrix with broken Riceberry phenolic extract. Food Chem 366:130574. https://doi.org/10.1016/j.foodchem.2021.130574

    Article  CAS  PubMed  Google Scholar 

  9. Marciano JS, Ferreira RR, de Souza AG, Barbosa RFS, de Moura Junior AJ, Rosa DS (2021) Biodegradable gelatin composite hydrogels filled with cellulose for chromium (VI) adsorption from contaminated water. Int J Biol Macromol 181:112–124. https://doi.org/10.1016/j.ijbiomac.2021.03.117

    Article  CAS  PubMed  Google Scholar 

  10. Singh S, Nwabor OF, Ontong JC, Kaewnopparat N, Voravuthikunchai SP (2020) Characterization of a novel, co-processed bio-based polymer, and its effect on mucoadhesive strength. Int J Biol Macromol 145:865–875. https://doi.org/10.1016/j.ijbiomac.2019.11.198

    Article  CAS  PubMed  Google Scholar 

  11. Singh S, Nwabor OF, Sukri DM, Wunnoo S, Dumjun K, Lethongkam S, Kusolphat P, Hemtanon N, Klinprathum K, Sunghan J, Dejyong K, Lertwittayanon K, Pisuchpen S, Voravuthikunchai SP (2022) Poly (vinyl alcohol) copolymerized with xanthan gum/hypromellose/sodium carboxymethyl cellulose dermal dressings functionalized with biogenic nanostructured materials for antibacterial and wound healing application. Int J Biol Macromol 216:235–250. https://doi.org/10.1016/j.ijbiomac.2022.06.172

    Article  CAS  PubMed  Google Scholar 

  12. Van Vuuren S, Holl D (2017) Antimicrobial natural product research: a review from a South African perspective for the years 2009–2016. J Ethnopharmacol 208:236–252. https://doi.org/10.1016/j.jep.2017.07.011

    Article  CAS  PubMed  Google Scholar 

  13. Wunnoo S, Paosen S, Lethongkam S, Sukkurd R, Waen-ngoen T, Nuidate T, Phengmak M, Voravuthikunchai SP (2021) Biologically rapid synthesized silver nanoparticles from aqueous Eucalyptus camaldulensis leaf extract: effects on hyphal growth, hydrolytic enzymes, and biofilm formation in Candida albicans. Biotechnol Bioeng 118(4):1578–1592. https://doi.org/10.1002/bit.27675

    Article  CAS  Google Scholar 

  14. Daus M, Wunnoo S, Voravuthikunchai SP, Saithong S, Poldorn P, Jungsuttiwong S, Chomlamay N, Yangok K, Watanapokasin R, Chakthong S (2022) Phloroglucinol–meroterpenoids from the leaves of Eucalyptus camaldulensis Dehnh. Phytochemistry 200:113179. https://doi.org/10.1016/j.phytochem.2022.113179

    Article  CAS  PubMed  Google Scholar 

  15. Grewal K, Joshi J, Rathee S, Kaur S, Singh HP, Batish DR (2022) Chemical Composition and potential of Eucalyptus camaldulensis Dehnh. essential oil and its major components as anti-inflammatory and anti-leishmanial agent. J Essent Oil Bearing Plants 25(3):419–429

    Article  CAS  Google Scholar 

  16. Huang Y, An M, Fang A, Olatunji OJ, Eze FN (2022) Antiproliferative activities of the lipophilic fraction of eucalyptus camaldulensis against mcf-7 breast cancer cells, uplc-esi-qtof-ms metabolite profile, and antioxidative functions. ACS Omega 7(31):27369–27381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Noumi VD, Deli M, Nguimbou RM, Baudelaire E, Rup-Jacques S, Amadou D, Sokeng S, Njintang NY (2022) Particle size effects on antioxydant and hepatoprotective potential of essential oil from eucalyptus camaldulensis leaves against carbon tetrachloride-induced hepatotoxicity in rats. Pharmacol Pharm 13(8):253–272

    Article  CAS  Google Scholar 

  18. Mondal M, Quispe C, Sarkar C, Bepari TC, Alam MJ, Saha S, Ray P, Rahim MA, Islam MT, Setzer WN (2021) Analgesic and anti-inflammatory potential of essential oil of eucalyptus camaldulensis leaf: in vivo and in silico studies. Nat Prod Commun 16(4):1934578X211007634

    CAS  Google Scholar 

  19. Lawal TO (2014) Ulcer-healing promoting activities of methanol extracts of Eucalyptus camaldulensis Dehnh. and Eucalyptus torelliana F. Muell in rat. Arch Basic Appl Med 2(3):1–11

    Google Scholar 

  20. Nwabor OF, Singh S, Wunnoo S, Lerwittayanon K, Voravuthikunchai SP (2021) Facile deposition of biogenic silver nanoparticles on porous alumina discs, an efficient antimicrobial, antibiofilm, and antifouling strategy for functional contact surfaces. Biofouling 37(5):538–554. https://doi.org/10.1080/08927014.2021.1934457

    Article  CAS  PubMed  Google Scholar 

  21. Nwabor OF, Singh S, Syukri DM, Voravuthikunchai SP (2021) Bioactive fractions of Eucalyptus camaldulensis inhibit important foodborne pathogens, reduce listeriolysin O-induced haemolysis, and ameliorate hydrogen peroxide-induced oxidative stress on human embryonic colon cells. Food Chem 344:128571. https://doi.org/10.1016/j.foodchem.2020.128571

    Article  CAS  PubMed  Google Scholar 

  22. Nwabor OF, Vongkamjam K, Voravuthikunchai SP (2019) Antioxidant properties and antibacterial effects of Eucalyptus camaldulensis ethanolic leaf extract on biofilm formation, motility, hemolysin production, and cell membrane of the foodborne pathogen Listeria monocytogenes. Foodborne Pathogens Dis 16(8):581–589. https://doi.org/10.1089/fpd.2019.2620

    Article  CAS  Google Scholar 

  23. Singh S, Chunglok W, Nwabor OF, Chulrik W, Jansakun C, Bhoopong P (2022) Porous biodegradable sodium alginate composite fortified with Hibiscus Sabdariffa L. calyx extract for the multifarious biological applications and extension of climacteric fruit shelf-life. J Polym Environ. https://doi.org/10.1007/s10924-022-02596-x

    Article  PubMed  Google Scholar 

  24. CLSI C (2016) Performance standards for antimicrobial susceptibility testing. Clinical Lab Stand Inst 35(3):16–38

    Google Scholar 

  25. Nwabor OF, Singh S, Marlina D, Voravuthikunchai SP (2020) Chemical characterization, release, and bioactivity of Eucalyptus camaldulensis polyphenols from freeze-dried sodium alginate and sodium carboxymethyl cellulose matrix. Food Qual Saf 4:203–212

    Article  CAS  Google Scholar 

  26. Ontong JC, Singh S, Nwabor OF, Chusri S, Kaewnam W, Kanokwiroon K, Septama AW, Panichayupakaranant P, Voravuthikunchai SP (2023) Microwave-assisted extract of rhodomyrtone from Rhodomyrtus tomentosa leaf: anti-inflammatory, antibacterial, antioxidant, and safety assessment of topical rhodomyrtone formulation. Sep Sci Tech 58(5):929–943. https://doi.org/10.1080/01496395.2023.2169162

    Article  CAS  Google Scholar 

  27. Singh S, Chidrawar VR, Hermawan D, Dodiya R, Samee W, Ontong JC, Ushir YV, Prajapati BG, Chittasupho C (2023) Hypromellose highly swellable composite fortified with Psidium guajava Leaf phenolic-rich extract for antioxidative, antibacterial, anti-inflammatory, anti-melanogenesis, and hemostasis applications. J Polym Environ. https://doi.org/10.1007/s10924-023-02819-9

    Article  Google Scholar 

  28. Fitzmaurice SD, Sivamani RK, Isseroff RR (2011) Antioxidant therapies for wound healing: a clinical guide to currently commercially available products. Skin Pharmacol Physiol 24(3):113–126. https://doi.org/10.1159/000322643

    Article  CAS  PubMed  Google Scholar 

  29. Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19(10):16240–16265

    Article  PubMed  PubMed Central  Google Scholar 

  30. Brahmkshatriya PP, Brahmkshatriya PS (2013) Terpenes: chemistry, biological role, and therapeutic applications. In: Ramawat K, Mérillon JM (eds) Natural products. Springer, Berlin, Heidelberg, pp 2665–2691. https://doi.org/10.1007/978-3-642-22144-6_120

    Chapter  Google Scholar 

  31. Amarowicz R (2007) Tannins: the new natural antioxidants?, vol 109. Wiley Online Library, Hobiken

    Google Scholar 

  32. Hashemi Gahruie H, Mirzapour A, Ghiasi F, Eskandari MH, Moosavi-Nasab M, Hosseini SMH (2022) Development and characterization of gelatin and Persian gum composite edible films through complex coacervation. LWT 153:112422. https://doi.org/10.1016/j.lwt.2021.112422

    Article  CAS  Google Scholar 

  33. Winter GD (1962) Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 193(4812):293–294

    Article  CAS  PubMed  Google Scholar 

  34. Ashraf A, Sarfraz RA, Mahmood A, Din Mu (2015) Chemical composition and in vitro antioxidant and antitumor activities of Eucalyptus camaldulensis Dehn. leaves. Ind Crops Prod 74:241–248. https://doi.org/10.1016/j.indcrop.2015.04.059

    Article  CAS  Google Scholar 

  35. Abotaleb M, Liskova A, Kubatka P, Büsselberg D (2020) Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules 10(2):221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang DJ, Moh SH, Son DH, You S, Kinyua AW, Ko CM, Song M, Yeo J, Choi Y-H, Kim KW (2016) Gallic acid promotes wound healing in normal and hyperglucidic conditions. Molecules 21(7):899

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chittasupho C, Manthaisong A, Okonogi S, Tadtong S, Samee W (2022) Effects of quercetin and curcumin combination on antibacterial, antioxidant, in vitro wound healing and migration of human dermal fibroblast cells. Int J Molec Sci 23(1):142

    Article  CAS  Google Scholar 

  38. Li L, He Y, Zhao M, Jiang J (2013) Collective cell migration: implications for wound healing and cancer invasion. Burns Trauma 1(1):2321–3868

    Google Scholar 

  39. Jonkman JE, Cathcart JA, Xu F, Bartolini ME, Amon JE, Stevens KM, Colarusso P (2014) An introduction to the wound healing assay using live-cell microscopy. Cell Adhes Migr 8(5):440–451

    Article  Google Scholar 

  40. Yarrow JC, Perlman ZE, Westwood NJ, Mitchison TJ (2004) A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol 4:1–9

    Article  Google Scholar 

  41. Mumtaz R, Zubair M, Khan MA, Muzammil S, Siddique MH (2022) Extracts of Eucalyptus alba Promote diabetic wound healing by inhibiting α-glucosidase and stimulating cell proliferation. Evid Based Complement Altern Med 2022:1–12

    Article  Google Scholar 

  42. Hukkeri VI, Karadi R, Akki K, Savadi R, Jaiprakash B, Kuppast I, Patil M (2002) Wound healing property of Eucalyptus globulus L. leaf extract’. Indian Drugs 39(9):481–483

    Google Scholar 

  43. Knezevic P, Aleksic V, Simin N, Svircev E, Petrovic A, Mimica-Dukic N (2016) Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii. J Ethnopharmacol 178:125–136. https://doi.org/10.1016/j.jep.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  44. Nosenko MA, Ambaryan SG, Drutskaya MS (2019) Proinflammatory cytokines and skin wound healing in mice. Mol Biol 53(5):653–664. https://doi.org/10.1134/S0026893319050121

    Article  CAS  Google Scholar 

  45. Chittasupho C, Chaobankrang K, Sarawungkad A, Samee W, Singh S, Hemsuwimon K, Okonogi S, Kheawfu K, Kiattisin K, Chaiyana W (2023) Antioxidant, anti-inflammatory and attenuating intracellular reactive oxygen species activities of nicotiana tabacum var. Virginia leaf extract phytosomes and shape memory gel formulation. Gels 9(2):78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ninan N, Forget A, Shastri VP, Voelcker NH, Blencowe A (2016) Antibacterial and anti-inflammatory ph-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing. ACS Appl Mater Interfaces 8(42):28511–28521. https://doi.org/10.1021/acsami.6b10491

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by Chiang Mai University, Chiang Mai, Thailand.

Author information

Authors and Affiliations

Authors

Contributions

VRC: Blood clotting, clotting kinetics, and review. SS: Conceptualization, method, investigation, writing-original, review, and editing. TJJ: Thermal analysis and review. RD: Microbiological analysis, review, and editing. WS: Chromatography analysis. CC: Conceptualization, cell-line analysis, funding acquisition, review, and editing.

Corresponding authors

Correspondence to Sudarshan Singh, Rajesh Dodiya or Chuda Chittasupho.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2984 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chidrawar, V.R., Singh, S., Jayeoye, T.J. et al. Porous Swellable Hypromellose Composite Fortified with Eucalyptus camaldulensis Leaf Hydrophobic/Hydrophilic Phenolic-rich Extract to Mitigate Dermal Wound Infections. J Polym Environ 31, 3841–3856 (2023). https://doi.org/10.1007/s10924-023-02860-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02860-8

Keywords

Navigation