Skip to main content
Log in

Water-Dispersible Polyurethanes Obtained by the Controlled Alternation of the Segments of Poly(propylene glycol), Poly(ethylene glycol) and Urethane

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Novel polyurethanes with exactly controlled structures, that is, alternating block polyurethanes based on poly(propylene glycol) and poly(ethylene glycol) that are linked through urethane segments, were synthesized by polyaddition polymerization. A reaction between isocyanate groups from the poly(propylene glycol) tolylene 2,4-diisocyanate terminated component and the hydroxyl groups of the poly(ethylene glycol) component as a chain extender produced the controlled structure. The chemical structure was characterized by nuclear magnetic resonance spectra, Fourier transform infrared spectroscopy, and varying poly(ethylene glycol) molecular weights. The thermal property was investigated by differential scanning calorimetry and thermogravimetric analysis. The wettability was studied using the static contact angle of water. These polymers exhibit remarkable crystallization features and very good dispersion in water. The presence of urethane segments on the molecular chains provides good stability for the dispersion in water. The obtained polymers possess good thermal properties. Differential scanning calorimetry and polarized optical microscopy revealed improved dispersion in water and increased crystallization capability in correlation with the increase of the PEG molecular weight. These polyurethanes would be promising candidates for friendly environmental polymer materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Not Applicable.

Code Availability

Not Applicable.

References

  1. Cheng B-X, Lu C-C, Li Q, Zhao S-Q, Bi C-S, Wu W, Huang C-X, Zhao H (2022) Preparation and properties of self-healing triboelectric nanogenerator based on waterborne polyurethane containing Diels-Alder bonds. J Polym Environ 30:5252–5262

    Article  CAS  Google Scholar 

  2. Xu J, Xiao W, Zhang S, Dong Z, Lei C (2022) Synthesis and characterization of polyurethane with poly(ether-ester) diols soft segments consisted by ether and ester linkages in one repeating unit. Eur Polym J 179:111553

    Article  CAS  Google Scholar 

  3. Chen Y, Yan J, Zhang Y, Chen W, Wang Z, Wang L (2022) Synthesis, characterization and antibacterial activity of novel β-cyclodextrin polyurethane materials. J Polym Environ 30:1012–1027

    Article  CAS  Google Scholar 

  4. Polo Fonseca L, Felisberti, (2021) Thermo- and UV-responsive amphiphilic nanogels via reversible [4+4] photocycloaddition of PEG/PCL-based polyurethane dispersions. Eur Polym J 160:110800

    Article  CAS  Google Scholar 

  5. Glowinska E, Wolak W, Datta J (2021) Eco-friendly route for thermoplastic polyurethane elastomers with bio-based hard segments composed of bio-glycol and mixtures of aromatic–aliphatic and aliphatic–aliphatic diisocyanate. J Polym Environ 29:2140–2149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oprea S, Potolinca VO, Oprea V (2021) New polyurethanes with specific dielectric behavior through included of 1,3,4-thiadiazole derivative in their structure. Eur Polym J 143:110177

    Article  CAS  Google Scholar 

  7. Oprea S, Potolinca V-O, Oprea V (2016) Synthesis and properties of new crosslinked polyurethane elastomers based on isosorbide. Eur Polym J 83:161–172

    Article  CAS  Google Scholar 

  8. Etxaniz I, Llorente O, Aizpurua J, Martin L, Gonzalez A, Irusta L (2019) Dispersion characteristics and curing behaviour of waterborne UV crosslinkable polyurethanes based on renewable dimer fatty acid polyesters. J Polym Environ 27:189–197

    Article  CAS  Google Scholar 

  9. Wondu E, Oh HW, Kim J (2019) Effect of DMPA and molecular weight of polyethylene glycol on water-soluble polyurethane. Polymers (Basel) 11:1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wondu E, Lule ZC, Kim J (2020) Fabrication of aliphatic water-soluble polyurethane composites with silane treated CaCO3. Polymers (Basel) 12:747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krol P, Krol B (2020) Structures, properties and applications of the polyurethane ionomers. J Mater Sci 55:73–87

    Article  CAS  Google Scholar 

  12. Santamaria-Echart A, Ugarte L, García-Astrain C, Arbelaiz A, Corcuera MA, Eceiza A (2016) Cellulose nanocrystals reinforced environmentally-friendly waterborne polyurethane nanocomposites. Carbohydr Polym 151:1203–1209

    Article  CAS  PubMed  Google Scholar 

  13. Zhou X, Li Y, Fang C, Li S, Cheng Y, Lei W, Meng X (2015) Recent advances in synthesis of waterborne polyurethane and their application in water-based ink: a review. J Mater Sci Technol 31:708–722

    Article  Google Scholar 

  14. Honarkar H (2018) Waterborne polyurethanes: a review. J Dispers Sci Technol 39:507–516

    Article  CAS  Google Scholar 

  15. Feng Q, Chen G, Liang J (2018) The preparation method of nonionic waterborne polyurethane. Model Meas Control C 79:222–228

    Article  Google Scholar 

  16. Heath R, Rungvichaniwat A (2002) The examination of the structure property relationships of some water-dispersed polyurethane elastomers. Prog Rubber Plast Recycl Technol 18:1–47

    Article  CAS  Google Scholar 

  17. Cheong IW, Nomura M, Kim JH (2000) Synthesis and aqueous solution behavior of water-soluble polyurethane (IPDI-PPG-DMPA) resin. Macromol Chem Phys 201:2221–2227

    Article  CAS  Google Scholar 

  18. Jaudouin O, Robin J, Lopez-Cuesta J-M, Perrin D, Imbert C (2012) Ionomer based polyurethanes a comparative study of properties and applications. Polym Int 61:495–510

    Article  CAS  Google Scholar 

  19. Kuok AME, Sipaut CS, Sundang M (2019) Synthesis and characterisation of new water-based polyurethane dispersion via solvent-free prepolymer mixing process. J Phys Conf Ser 1358:012039

    Article  CAS  Google Scholar 

  20. Mumtaz F, Zuber M, Zia KM, Jamil T, Hussain R (2013) Synthesis and properties of aqueous polyurethane dispersions: Influence of molecular weight of polyethylene glycol. Korean J Chem Eng 30:2259–2263

    Article  CAS  Google Scholar 

  21. Qiao ZY, Du FS, Zhang R, Liang DH, Li ZC (2010) Biocompatible thermoresponsive polymers with pendent oligo(ethylene glycol) chains and cyclic ortho ester groups. Macromolecules 43:6485–6494

    Article  CAS  Google Scholar 

  22. Albers PTM, Van Der Ven LGJ, Van Benthem RATM, Esteves ACC, De With G (2020) Water swelling behavior of poly(ethylene glycol)-based polyurethane networks. Macromolecules 53:862–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hamley IW, Krysmann MJ (2008) Effect of PEG crystallization on the self-assembly of PEG/peptide copolymers containing amyloid peptide fragments. Langmuir 24:8210–8214

    Article  CAS  PubMed  Google Scholar 

  24. Gonzalez-Fernandez D, Torneiro M, Lazzari M (2020) Some guidelines for the synthesis and melting characterization of azide poly(ethylene glycol) derivatives. Polymers (Basel) 12:1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang Z, Wu G (2020) Effects of soft segment characteristics on the properties of biodegradable amphiphilic waterborne polyurethane prepared by a green process. J Mater Sci 55:3139–3156

    Article  CAS  Google Scholar 

  26. Arevalo-Alquichire S, Morales-Gonzalez M, Navas-Gomez K, Diaz LE, Gomez-Tejedor JA, Serrano MA, Valero MF (2020) Influence of polyol/crosslinker blend composition on phase separation and thermo-mechanical properties of polyurethane thin films. Polymers (Basel) 12:666

    Article  CAS  PubMed  Google Scholar 

  27. Francolini I, Silvestro I, Di Lisio V, Martinelli A, Piozzi A (2019) Synthesis, characterization, and bacterial fouling-resistance properties of polyethylene glycol-grafted polyurethane elastomers. Int J Mol Sci 20:1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oprea S (2011) Effect of the long chain extender on the properties of linear and castor oil cross-linked PEG-based polyurethane elastomers. J Mater Sci 46:2251–2258

    Article  CAS  Google Scholar 

  29. Corneillie S, Lan PN, Schacht E, Davies M, Shard A, Green R, Denyer S, Wassall M, Whitfield H, Choong S (1998) Polyethylene glycol-containing polyurethanes for biomedical applications. Polym Int 46:251–259

    Article  CAS  Google Scholar 

  30. Doseva V, Shenkov S, Vasilev S, Baranovsky VY (2004) Synthesis and properties of water soluble polyurethanes based on poly(ethylene glycol). J Appl Polym Sci 91:3651–3658

    Article  CAS  Google Scholar 

  31. Sundararajan S, Samui AB, Kulkarni PS (2017) Synthesis and characterization of poly(ethylene glycol) (PEG) based hyperbranched polyurethanes as thermal energy storage materials. Thermochim Acta 650:114–122

    Article  CAS  Google Scholar 

  32. Kadajji VG, Betageri GV (2011) Water soluble polymers for pharmaceutical applications. Polymers (Basel) 3:1972–2009

    Article  CAS  Google Scholar 

  33. Alswieleh AM, Cheng N, Leggett GJ, Armes SP (2014) Spatial control over cross-linking dictates the pH-responsive behavior of poly(2-(tert -butylamino)ethyl methacrylate) brushes. Langmuir 30:1391–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li H, Sun JT, Wang C, Liu S, Yuan D, Zhou X, Tan J, Stubbs L, He C (2017) High modulus, strength, and toughness polyurethane elastomer based on unmodified lignin. ACS Sustain Chem Eng 5:7942–7949

    Article  CAS  Google Scholar 

  35. Xia H, Song M, Jin J, Chen L (2006) Poly(propylene glycol)-grafted multi-walled carbon nanotube polyurethane. Macromol Chem Phys 207:1945–1952

    Article  CAS  Google Scholar 

  36. Campos E, Cordeiro R, Alves P, Rasteiro MG, Gil MH (2008) Polyurethane-based microparticles: formulation and influence of processes variables on its characteristics. J Microencapsul 25:154–169

    Article  CAS  PubMed  Google Scholar 

  37. Kupka V, Vojtova L, Fohlerova Z, Jancar J (2016) Solvent free synthesis and structural evaluation of polyurethane films based on poly(ethylene glycol) and poly(caprolactone). Express Polym Lett 10:479–492

    Article  CAS  Google Scholar 

  38. Pegoraro M, Galbiati A, Ricca G (2003) 1H nuclear magnetic resonance study of polyurethane prepolymers from toluene diisocyanate and polypropylene glycol. J Appl Polym Sci 87:347–357

    Article  CAS  Google Scholar 

  39. Prabhakar A, Chattopadhyay DK, Jagadeesh B, Raju KVSN (2005) Structural investigations of polypropylene glycol (PPG) and isophorone diisocyanate (IPDI)-based polyurethane prepolymer by 1D and 2D NMR spectroscopy. J Polym Sci Part A Polym Chem 43:1196–1209

    Article  CAS  Google Scholar 

  40. Numata K, Asano A, Nakazawa Y (2020) Solid-state and time domain NMR to elucidate degradation behavior of thermally aged poly(urea-urethane). Polym Degrad Stab 172:109052

    Article  CAS  Google Scholar 

  41. He Y, Zhang X, Zhang X, Huang H, Chang J, Chen H (2012) Structural investigations of toluene diisocyanate (TDI) and trimethylolpropane (TMP)-based polyurethane prepolymer. J Ind Eng Chem 18:1620–1627

    Article  CAS  Google Scholar 

  42. Oprea S, Potolinca VO, Oprea V (2018) Influence of the hydroquinone ether moieties and bisphenol a glycerolate diacrylate on the UV stability behavior of new polyurethane materials. J Polym Res 25:79

    Article  Google Scholar 

  43. Somdee P, Lassu-Kuknyo T, Konya C, Szabo T, Marossy K (2019) Thermal analysis of polyurethane elastomers matrix with different chain extender contents for thermal conductive application. J Therm Anal Calorim 138:1003–1010

    Article  CAS  Google Scholar 

  44. Zhou G, Ma C, Zhang G (2011) Synthesis of polyurethane-g-poly(ethylene glycol) copolymers by macroiniferter and their protein resistance. Polym Chem 2:1409–1414

    Article  CAS  Google Scholar 

  45. Asensio M, Costa V, Nohales A, Bianchi O, Gomez CM (2019) Tunable structure and properties of segmented thermoplastic polyurethanes as a function of flexible segment. Polymers (Basel) 11:1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747

    Article  CAS  Google Scholar 

  47. Mccormick CL (1991) Structural design of water-soluble copolymers. ACS Symp Ser 467:2–24

    Article  CAS  Google Scholar 

  48. Li Y, Ma Q, Huang C, Liu G (2013) Crystallization of poly(ethylene glycol) in poly(methyl methacrylate) networks. Mater Sci 19:147–151

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contribution to the paper. The corresponding author is responsible for ensuring that the descriptions are accurate and agreed by all authors.

Corresponding authors

Correspondence to Stefan Oprea or Violeta Otilia Potolinca.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oprea, S., Potolinca, V.O. Water-Dispersible Polyurethanes Obtained by the Controlled Alternation of the Segments of Poly(propylene glycol), Poly(ethylene glycol) and Urethane. J Polym Environ 31, 3754–3767 (2023). https://doi.org/10.1007/s10924-023-02851-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02851-9

Keywords

Navigation