Skip to main content
Log in

Hydrothermal-Assisted Grafting of Schiff base Chitosan by Salicylaldehyde for Adsorptive Removal of Acidic Dye: Statistical Modeling and Adsorption Mechanism

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The present study employed the hydrothermal technique to graft biopolymer chitosan (CHS) with an aromatic aldehyde (salicylaldehyde, SA) for the adsorption of an acidic azo dye (reactive orange 16, RO 16) from an aqueous environment. The obtained hydrothermally achieved Schiff’s base (chitosan-salicylaldehyde, CHS-SA) material was analyzed using BET, CHN-O, FTIR, SEM, XRD, and pHpzc. The impacts of A: CHS-SA dosage (0.02–0.08 g/100 mL), B: pH (4–10), and C: time (5–25 min) factors on the adsorption performance of CHS-SA towards RO16 dye were fully examined using Box-Behnken design (BBD). The pseudo-second-order model exhibited the greatest match for the adsorption of RO16 dye by CHS-SA, whilst the equilibrium isotherm observations matched the Freundlich model. The maximal adsorption capacity of CHS-SA as established by the Langmuir model was 143.4 mg/g. Several pathways, including electrostatic attraction, π-π stacking, n-π interaction, and H-bonding drive the RO16 adsorption by CHS-SA. This work supports the idea of a hydrothermal way to produce grafted CHS-SA capable of removing harmful contaminants from an aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.”

References

  1. Rathi BS, Kumar PS, Vo DVN (2021) Critical review on hazardous pollutants in water environment: occurrence, monitoring, fate, removal technologies and risk assessment. Sci Total Environ 797:149134

    Article  CAS  PubMed  Google Scholar 

  2. Abd Malek NN, Yousif E, Jawad EAH (2020) Optimization of adsorption parameters for reactive red 4 (RR4) removal by crosslinked chitosan-epichlorohydrin using Box Behnken design. Sci Lett 14(1):83–95

    Google Scholar 

  3. Deb A, Debnath A, Saha B (2021) Sono-assisted enhanced adsorption of eriochrome Black-T dye onto a novel polymeric nanocomposite: kinetic, isotherm, and response surface methodology optimization. J Disper Sci Technol 42(11):1579–1592

    Article  CAS  Google Scholar 

  4. Seyedi MS, Sohrabi MR, Motiee F, Mortazavinik S (2020) Synthesis and characterization of activated carbon@ zerovalent iron–nickel nanoadsorbent for highly efficient removal of reactive orange 16 from aqueous sample: experimental design, kinetic, isotherm and thermodynamic studies. Res Chem Intermediate 46(3):1645–1662

    Article  CAS  Google Scholar 

  5. Kumar D, Gupta SK (2022) Electrochemical oxidation of direct blue 86 dye using MMO coated Ti anode: modelling, kinetics and degradation pathway. Chem Eng Process-Process Intensifi 181:109127

    Article  CAS  Google Scholar 

  6. Ihaddaden S, Aberkane D, Boukerroui A, Robert D (2022) Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). J Water Process Eng 49:102952

    Article  Google Scholar 

  7. Su M, Li H, He X, Xu Z (2022) Significant enhancement of pesticide and organic dyes degradation by ion-exchange within a metal–organic framework. Polyhedron 215:115651

    Article  CAS  Google Scholar 

  8. Das P, Debnath P, Debnath A (2021) Enhanced sono-assisted adsorptive uptake of malachite green dye onto magnesium ferrite nanoparticles: kinetic, isotherm and cost analysis. Environ Nanotechnol Monit Manage 16:100506

    CAS  Google Scholar 

  9. Saha B, Debnath A, Saha B (2022) Fabrication of PANI@ Fe–Mn–Zr hybrid material and assessments in sono-assisted adsorption of methyl red dye: Uptake performance and response surface optimization. J Indian Chem Soc 99(9):100635

    Article  CAS  Google Scholar 

  10. Rafaie HAG, Yusop NFM, Azmi NF, Abdullah NS, Ramli NIT (2021) Photocatalytic degradation of methylene blue dye solution using different amount of ZnO as a photocatalyst. Sci Lett 15(1):1–12

    Article  Google Scholar 

  11. Jawad AH, Abdulhameed AS, Surip SN, Sabar S (2020) Adsorptive performance of carbon modified chitosan biopolymer for cationic dye removal: kinetic, isotherm, thermodynamic, and mechanism study. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1807966

    Article  Google Scholar 

  12. Ma J, Faqir Y, Tan C, Khaliq G (2022) Terrestrial insects as a promising source of chitosan and recent developments in its application for various industries. Food Chem 373:131407

    Article  CAS  PubMed  Google Scholar 

  13. Mirzai M, Asadabadi S (2022) Magnetic nanocomposites containing low and medium-molecular weight chitosan for dye adsorption: hydrophilic property versus functional groups. J Polym Environ 30(4):1560–1573

    Article  CAS  Google Scholar 

  14. Abd Malek NN, Jawad AH, Abdulhameed AS, Ismail K, Hameed BH (2020) New magnetic Schiff’s base-chitosan-glyoxal/fly ash/Fe3O4 biocomposite for the removal of anionic azo dye: an optimized process. Int J Biol Macromol 146:530–539

    Article  CAS  Google Scholar 

  15. Rosli N, Yahya WZN, Wirzal MDH (2022) Crosslinked chitosan/poly (vinyl alcohol) nanofibers functionalized by ionic liquid for heavy metal ions removal. Int J Biol Macromol 195:132–141

    Article  CAS  PubMed  Google Scholar 

  16. Raval NP, Mukherjee S, Shah NK, Gikas P, Kumar M (2021) Hexametaphosphate cross-linked chitosan beads for the eco-efficient removal of organic dyes: Tackling water quality. J Environ Manage 280:111680

    Article  CAS  PubMed  Google Scholar 

  17. Priyadarshi G, Raval NP, Trivedi MH (2022) Microwave-assisted synthesis of cross-linked chitosan-metal oxide nanocomposite for methyl orange dye removal from unary and complex effluent matrices. Int J Biol Macromol 219:53–67

    Article  CAS  PubMed  Google Scholar 

  18. Chatterjee S, Chatterjee T, Woo SH (2011) Influence of the polyethyleneimine grafting on the adsorption capacity of chitosan beads for reactive black 5 from aqueous solutions. Chem Eng J 166(1):168–175

    Article  CAS  Google Scholar 

  19. Rahmi R, Lelifajri L, Iqbal M, Fathurrahmi F, Jalaluddin J, Sembiring R, Iqhrammullah M (2022) Preparation, characterization and adsorption study of PEDGE-cross-linked magnetic chitosan (PEDGE-MCh) microspheres for Cd2+ removal. Arab J Sci Eng. https://doi.org/10.1007/s13369-022-06786-6

    Article  Google Scholar 

  20. Khairkar SR, Pansare SV, Shedge AA, Chhatre S, Kulal DK, Patil VR, Pansare AV (2021) Biological macromolecule chitosan grafted co-polymeric composite: bio-adsorption probe on cationic dyes. Polym Bullet. https://doi.org/10.1007/s00289-021-03954-w

    Article  Google Scholar 

  21. Chen J, Ouyang J, Chen W, Zheng Z, Yang Z, Liu Z, Zhou L (2022) Fabrication and adsorption mechanism of chitosan/Zr-MOF (UiO-66) composite foams for efficient removal of ketoprofen from aqueous solution. Chem Eng J 431:134045

    Article  CAS  Google Scholar 

  22. Dodi G, Hritcu D, Lisa G, Popa MI (2012) Core–shell magnetic chitosan particles functionalized by grafting: synthesis and characterization. Chem Eng J 203:130–141

    Article  CAS  Google Scholar 

  23. Tahira I, Aslam Z, Abbas A, Monim-ul-Mehboob M, Ali S, Asghar A (2019) Adsorptive removal of acidic dye onto grafted chitosan: a plausible grafting and adsorption mechanism. Int J Boil Macromol 136:1209–1218

    Article  CAS  Google Scholar 

  24. Sanchez Ramirez DO, Periolatto M, Carletto RA, Varesano A, Vineis C, Tonetti C, Bongiovanni R (2020) Cr (VI) adsorption from aqueous solutions on grafted chitosan. Can J Chem Eng 98(7):1483–1494

    Article  CAS  Google Scholar 

  25. Carvalho IC, Medeiros Borsagli FG, Mansur AA, Caldeira CL, Haas DJ, Lage AP, Mansur HS (2021) 3D sponges of chemically functionalized chitosan for potential environmental pollution remediation: biosorbents for anionic dye adsorption and ‘antibiotic-free’antibacterial activity. Environ Technol 42(13):2046–2066

    Article  CAS  PubMed  Google Scholar 

  26. Lu Y, Zhang W, Wang M, Zhang H, Li J, Luo W (2022) Fabrication of GO/PAN nanofiber membrane grafted with chitosan as efficient adsorbent for dye removal. J Polym Environ 30:2943–2954

    Article  CAS  Google Scholar 

  27. Zhuang S, Zhang Q, Wang J (2021) Adsorption of Co2+ and Sr2+ from aqueous solution by chitosan grafted with EDTA. J Mol Liq 325:115197

    Article  CAS  Google Scholar 

  28. Zia Q, Tabassum M, Meng J, Xin Z, Gong H, Li J (2021) Polydopamine-assisted grafting of chitosan on porous poly (L-lactic acid) electrospun membranes for adsorption of heavy metal ions. Int J Biol Macromol 167:1479–1490

    Article  CAS  PubMed  Google Scholar 

  29. Malesic-Eleftheriadou N, Evgenidou E, Lazaridou M, Bikiaris DN, Yang X, Kyzas GZ, Lambropoulou DA (2021) Simultaneous removal of anti-inflammatory pharmaceutical compounds from an aqueous mixture with adsorption onto chitosan zwitterionic derivative. Colloids Surf A Physicochem Eng Asp 619:126498

    Article  CAS  Google Scholar 

  30. Chen Z, Zhang ZB, Zeng J, Zhang ZJ, Ma S, Tang CM, Xu JQ (2023) Preparation of polyethyleneimine-modified chitosan/Ce-UIO-66 composite hydrogel for the adsorption of methyl orange. Carbohydr Polym 299:120079

    Article  CAS  PubMed  Google Scholar 

  31. Vadivel T, Dhamodaran M, Kulathooran S, Kavitha S, Amirthaganesan K, Chandrasekaran S, Senguttuvan S (2020) Rhodium (III) complexes derived from complexation of metal with azomethine linkage of chitosan biopolymer Schiff base ligand: spectral, thermal, morphological and electrochemical studies. Carbohydr Res 487:107878

    Article  CAS  PubMed  Google Scholar 

  32. Sun Y, Kang Y, Zhong W, Liu Y, Dai Y (2020) A simple phosphorylation modification of hydrothermally cross-linked chitosan for selective and efficient removal of U (VI). J Solid State Chem 292:121731

    Article  CAS  Google Scholar 

  33. Dalvand A, Nabizadeh R, Ganjali MR, Khoobi M, Nazmara S, Mahvi AH (2016) Modeling of reactive blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe3O4 nanoparticles: optimization, reusability, kinetic and equilibrium studies. J Magne Magne Mater 404:179–189

    Article  CAS  Google Scholar 

  34. Sing KS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem 57(4):603–619

    Article  CAS  Google Scholar 

  35. El Kurdi R, Chebl M, Sillanpää M, El-Rassy H, Patra D (2021) Chitosan oligosaccharide/silica nanoparticles hybrid porous gel for mercury adsorption and detection. Mater Today Communicati 28:102707

    Article  Google Scholar 

  36. Thatte CS, Rathnam MV, Pise AC (2014) Chitosan-based Schiff base-metal complexes (mn, Cu, Co) as heterogeneous, new catalysts for the β-isophorone oxidation. J Chem Sci 126(3):727–737

    Article  CAS  Google Scholar 

  37. Dhanavel S, Manivannan N, Mathivanan N, Gupta VK, Narayanan V, Stephen A (2018) Preparation and characterization of cross-linked chitosan/palladium nanocomposites for catalytic and antibacterial activity. J Mol Liq 257:32–41

    Article  CAS  Google Scholar 

  38. Jawad AH, Abdulhameed AS, Wilson LD, Hanafiah MAKM, Nawawi WI, ALOthman ZA, Rizwan Khan M (2021) Fabrication of schiff’s base chitosan-glutaraldehyde/activated charcoal composite for cationic dye removal: optimization using response surface methodology. J Polym Environ 29(9):2855–2868

    Article  CAS  Google Scholar 

  39. de Araújo EL, Barbosa HFG, Dockal ER, Cavalheiro ÉTG (2017) Synthesis, characterization and biological activity of Cu (II), ni (II) and zn (II) complexes of biopolymeric Schiff bases of salicylaldehydes and chitosan. Int J Biol Macromol 95:168–176

    Article  PubMed  Google Scholar 

  40. Zhou S, Dong M, Ding X, Xue X, Yang H (2021) Application of RSM to optimize the recovery of ammonia nitrogen from high chromium effluent produced in vanadium industry using struvite precipitation. J Environ Chem Eng 9(6):106318

    Article  CAS  Google Scholar 

  41. Kutluay S, Temel F (2021) Silica gel based new adsorbent having enhanced VOC dynamic adsorption/desorption performance. Colloids Surf A Physicochem Eng Asp 609:125848

    Article  CAS  Google Scholar 

  42. Marichamy MK, Kumaraguru A, Jonna N (2021) Particle size distribution modeling and kinetic study for coagulation treatment of tannery industry wastewater at response surface optimized condition. J Clean Prod 297:126657

    Article  CAS  Google Scholar 

  43. Obulapuram PK, Arfin T, Mohammad F, Khiste SK, Chavali M, Albalawi AN, Al-Lohedan HA (2021) Adsorption, equilibrium isotherm, and thermodynamic studies towards the removal of reactive orange 16 dye using Cu (I)-polyaninile composite. Polym 13(20):3490

    Article  CAS  Google Scholar 

  44. Jawad AH, Abdulhameed AS, Hanafiah MAKM, ALOthman ZA, Khan MR, Surip SN (2021) Numerical desirability function for adsorption of methylene blue dye by sulfonated pomegranate peel biochar: modeling, kinetic, isotherm, thermodynamic, and mechanism study. Korean J Chem Eng 38(7):1499–1509

    Article  CAS  Google Scholar 

  45. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Vet Akad Handl 24:1–39

    Google Scholar 

  46. Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124

    Article  CAS  Google Scholar 

  47. Ahmed MA, Ahmed MA, Mohamed AA (2022) Facile adsorptive removal of dyes and heavy metals from wastewaters using magnetic nanocomposite of Zinc ferrite@ reduced graphene oxide. Inorg Chem Communi 144:109912

    Article  CAS  Google Scholar 

  48. Abdulhameed AS, Mohammad AT, Jawad AH (2019) Modeling and mechanism of reactive orange 16 dye adsorption by chitosan-glyoxal/TiO2 nanocomposite: application of response surface methodology. Desalin Water Treat 164:346–360

    Article  CAS  Google Scholar 

  49. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  50. Frenudlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471

    Google Scholar 

  51. Temkin MI (1940) Kinetics of ammonia synthesis on promoted iron catalysts. Acta physiochim URSS 12:327–356

    CAS  Google Scholar 

  52. Wang W, Fan M, Ni J, Peng W, Cao Y, Li H, Song S (2022) Efficient dye removal using fixed-bed process based on porous montmorillonite nanosheet/poly (acrylamide-co-acrylic acid)/sodium alginate hydrogel beads. Appl Clay Sci 219:106443

    Article  CAS  Google Scholar 

  53. Kloster GA, Valiente M, Marcovich NE, Mosiewicki MA (2020) Adsorption of arsenic onto films based on chitosan and chitosan/nano-iron oxide. Int J Biol Macromol 165:1286–1295

    Article  CAS  PubMed  Google Scholar 

  54. Arfin T, Bhaisare DA, Waghmare SS (2021) Development of a PANI/Fe (NO3)2 nanomaterial for reactive orange 16 (RO16) dye removal. Anal Methods 13(44):5309–5327

    Article  CAS  PubMed  Google Scholar 

  55. Abd Malek NN, Jawad AH, Ismail K, Razuan R, ALOthman ZA (2021) Fly ash modified magnetic chitosan-polyvinyl alcohol blend for reactive orange 16 dye removal: Adsorption parametric optimization. Int J Boil Macromol 189:464–476

    Article  Google Scholar 

  56. Piri F, Mollahosseini A, Hosseini MM (2019) Enhanced adsorption of dyes on microwave-assisted synthesized magnetic zeolite-hydroxyapatite nanocomposite. J Environ Chem Eng 7(5):103338

    Article  CAS  Google Scholar 

  57. Akbar Ali AM, Karthikeyan RK, Sentamil Selvan M, Mithilesh KR, Madhangi P, Maheswari N, Janani SG, Padmanaban VC, Singh RS (2020) Removal of reactive orange 16 by adsorption onto activated carbon prepared from rice husk ash: statistical modelling and adsorption kinetics. Sep Sci Technol 55(1):26–34

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Ministry of Higher Education Malaysia (MoHE) for supporting this research project under Fundamental Research Grant Scheme (Ref: FRGS/1/2022/TK09/UITM/02/26).

Funding

This research project has received a Fundamental Research Grant Scheme (Ref: FRGS/1/2022/TK09/UITM/02/26) fund from the Ministry of Higher Education (MoHE) Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by NIN, ASA, AHJ, SNS, RR, MLI. The first draft of the manuscript was written by NIN, ASA, AHJ, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ali H. Jawad.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 40.8 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Normi, N.I., Abdulhameed, A.S., Jawad, A.H. et al. Hydrothermal-Assisted Grafting of Schiff base Chitosan by Salicylaldehyde for Adsorptive Removal of Acidic Dye: Statistical Modeling and Adsorption Mechanism. J Polym Environ 31, 1925–1937 (2023). https://doi.org/10.1007/s10924-022-02730-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02730-9

Keywords

Navigation