Skip to main content
Log in

Impact of Lactic Acid and Genipin Concentration on Physicochemical and Mechanical Properties of Chitosan Membranes

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

A Correction to this article was published on 29 December 2022

This article has been updated

Abstract

Chitosan is a linear polysaccharide that has a growing interest in several biomedical applications. Due to its poor solubility in water, aqueous organic acids are required to dissolve chitosan. Chitosan-based materials have been widely investigated for several industrial and biomedical applications. It becomes crucial to study the effect of the additives on the chemical, physical, and mechanical properties of chitosan. Here, we present the effect of various material combinations: chitosan, lactic acid and genipin. We intend to study the effect of elevated concentrations of lactic acid on the stability and elasticity of chitosan membranes. Our research also presents the effect of the concentration of genipin crosslinker, a biocompatible natural product, on the properties of chitosan materials. Obtained results show that lactic acid acts as a physical and a chemical crosslinker between chitosan chains, which leads to increase chitosan membrane stretchability thanks to the plasticizing characteristic of lactic acid. Obtained membranes show a high solubility in water that can be avoided by the introduction of genipin as a crosslinker. This significantly reduces the solubility of membranes in aqueous solutions and makes them more stable even under low pH’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations. Raw data will be provided on request.

Change history

References

  1. Zebda A, Alcaraz J-P, Vadgama P et al (2018) Challenges for successful implantation of biofuel cells. Bioelectrochemistry 124:57–72. https://doi.org/10.1016/j.bioelechem.2018.05.011

    Article  CAS  PubMed  Google Scholar 

  2. Chuang W-Y, Young T-H, Yao C-H, Chiu W-Y (1999) Properties of the poly(vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro. Biomaterials 20:1479–1487. https://doi.org/10.1016/S0142-9612(99)00054-X

    Article  CAS  PubMed  Google Scholar 

  3. Bandara S, Du H, Carson L et al (2020) Agricultural and Biomedical Applications of Chitosan-Based Nanomaterials. Nanomaterials 10:1903. https://doi.org/10.3390/nano10101903

  4. Aranaz I, Acosta N, Civera C et al (2018) Cosmetics and cosmeceutical applications of chitin, Chitosan and their derivatives. Polym (Basel) 10:213. https://doi.org/10.3390/polym10020213

    Article  CAS  Google Scholar 

  5. Vrana NE, Liu Y, McGuinness GB, Cahill PA (2008) Characterization of poly(vinyl alcohol)/Chitosan Hydrogels as vascular tissue Engineering Scaffolds. Macromol Symp 269:106–110. https://doi.org/10.1002/masy.200850913

    Article  CAS  Google Scholar 

  6. Szymańska E, Winnicka K (2015) Stability of Chitosan—A Challenge for Pharmaceutical and Biomedical Applications. Mar Drugs 13:1819–1846. https://doi.org/10.3390/md13041819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hamdine M, Heuzey M-C, Bégin A (2005) Effect of organic and inorganic acids on concentrated chitosan solutions and gels. Int J Biol Macromol 37:134–142. https://doi.org/10.1016/j.ijbiomac.2005.09.009

    Article  CAS  PubMed  Google Scholar 

  8. Melro E, Antunes FE, da Silva GJ et al (2020) Chitosan Films in Food Applications. Tuning Film Properties by changing acidic dissolution conditions. Polym (Basel) 13:1. https://doi.org/10.3390/polym13010001

    Article  CAS  Google Scholar 

  9. Pavoni JMF, Luchese CL, Tessaro IC (2019) Impact of acid type for chitosan dissolution on the characteristics and biodegradability of cornstarch/chitosan based films. Int J Biol Macromol 138:693–703. https://doi.org/10.1016/j.ijbiomac.2019.07.089

    Article  CAS  PubMed  Google Scholar 

  10. Dou X, Li Q, Wu Q et al (2020) Effects of lactic acid and mixed acid aqueous solutions on the preparation, structure and properties of thermoplastic chitosan. Eur Polym J 134:109850. https://doi.org/10.1016/j.eurpolymj.2020.109850

    Article  CAS  Google Scholar 

  11. Baiardo M, Frisoni G, Scandola M et al (2003) Thermal and mechanical properties of plasticized poly(L-lactic acid). J Appl Polym Sci 90:1731–1738. https://doi.org/10.1002/app.12549

    Article  CAS  Google Scholar 

  12. Shibata M, Someya Y, Orihara M, Miyoshi M (2006) Thermal and mechanical properties of plasticized poly(L-lactide) nanocomposites with organo-modified montmorillonites. J Appl Polym Sci 99:2594–2602. https://doi.org/10.1002/app.22268

    Article  CAS  Google Scholar 

  13. Lednev I, Salomatina E, Ilyina S et al (2021) Development of biodegradable polymer blends based on Chitosan and Polylactide and Study of their Properties. Materials 14:4900. https://doi.org/10.3390/ma14174900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shi Z, Liu X, Cong H et al (2022) Grafting of poly(lactic acid) by cyclodextrin extrusion reaction and its foaming properties. Iran Polym J 31:1161–1172. https://doi.org/10.1007/s13726-022-01067-3

    Article  CAS  Google Scholar 

  15. Rasal RM, Janorkar A, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356. https://doi.org/10.1016/j.progpolymsci.2009.12.003

    Article  CAS  Google Scholar 

  16. Komoto D, Ikeda R, Furuike T, Tamura H (2018) Preparation of Chitosan-Coated poly(L-Lactic acid) fibers for suture threads. Fibers 6:84. https://doi.org/10.3390/fib6040084

    Article  CAS  Google Scholar 

  17. Balla E, Daniilidis V, Karlioti G et al (2021) Poly(lactic acid): a versatile Biobased Polymer for the future with multifunctional Properties—From Monomer Synthesis, polymerization techniques and Molecular Weight increase to PLA applications. Polym (Basel) 13:1822. https://doi.org/10.3390/polym13111822

    Article  CAS  Google Scholar 

  18. Mi F-L, Tan Y-C, Liang H-C et al (2001) In vitro evaluation of a chitosan membrane cross-linked with genipin. J Biomater Sci Polym Ed 12:835–850. https://doi.org/10.1163/156856201753113051

    Article  CAS  PubMed  Google Scholar 

  19. Lai J-Y (2012) Biocompatibility of Genipin and Glutaraldehyde cross-linked Chitosan materials in the Anterior Chamber of the Eye. Int J Mol Sci 13:10970–10985. https://doi.org/10.3390/ijms130910970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shitanda I, Oda K, Loew N et al (2021) Chitosan-based enzyme ink for screen-printed bioanodes. RSC Adv 11:20550–20556. https://doi.org/10.1039/D1RA03277A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pizzolitto C, Cok M, Asaro F et al (2020) On the mechanism of Genipin binding to primary Amines in Lactose-Modified Chitosan at Neutral pH. Int J Mol Sci 21:6831. https://doi.org/10.3390/ijms21186831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. di Tommaso S, David P, Picolet K et al (2013) Structure of genipin in solution: a combined experimental and theoretical study. RSC Adv 3:13764–13771. https://doi.org/10.1039/c3ra42147c

    Article  CAS  Google Scholar 

  23. Butler MF, Ng Y-F, Pudney PDA (2003) Mechanism and kinetics of the Crosslinking reaction between biopolymers. Containing Primary Amine Groups and Genipin

  24. Vedula SS, Yadav GD (2021) Chitosan-based membranes preparation and applications: Challenges and opportunities. J Indian Chem Soc 98:100017. https://doi.org/10.1016/j.jics.2021.100017

    Article  CAS  Google Scholar 

  25. Jaworska M, Sakurai K, Gaudon P, Guibal E (2003) Influence of chitosan characteristics on polymer properties. I: crystallographic properties. Polym Int 52:198–205. https://doi.org/10.1002/pi.1159

    Article  CAS  Google Scholar 

  26. Bhattarai N, Ramay HR, Chou S-H, Zhang M (2006) Chitosan and lactic acid-grafted chitosan nanoparticles as carriers for prolonged drug delivery. Int J Nanomedicine 1:181–187. https://doi.org/10.2147/nano.2006.1.2.181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klein MP, Hackenhaar CR, Lorenzoni ASG et al (2016) Chitosan crosslinked with genipin as support matrix for application in food process: support characterization and β-d-galactosidase immobilization. Carbohydr Polym 137:184–190. https://doi.org/10.1016/j.carbpol.2015.10.069

    Article  CAS  PubMed  Google Scholar 

  28. Yasmeen S, Kabiraz M, Saha B et al (2016) Chromium (VI) ions removal from Tannery Effluent using Chitosan-Microcrystalline Cellulose Composite as Adsorbent. Int Res J Pure Appl Chem 10:1–14. https://doi.org/10.9734/IRJPAC/2016/23315

    Article  CAS  Google Scholar 

  29. Khoerunnisa F, Nurhayati M, Dara F et al (2021) Physicochemical Properties of TPP-Crosslinked Chitosan Nanoparticles as potential Antibacterial Agents. Fibers Polym 22:2954–2964. https://doi.org/10.1007/s12221-021-0397-z

    Article  CAS  Google Scholar 

  30. Fernandes Queiroz M, Melo K, Sabry D et al (2014) Does the use of Chitosan Contribute to oxalate kidney stone formation? Mar Drugs 13:141–158. https://doi.org/10.3390/md13010141

    Article  CAS  PubMed  Google Scholar 

  31. Pavoni JMF, dos Santos NZ, May IC et al (2021) Impact of acid type and glutaraldehyde crosslinking in the physicochemical and mechanical properties and biodegradability of chitosan films. Polym Bull 78:981–1000. https://doi.org/10.1007/s00289-020-03140-4

    Article  CAS  Google Scholar 

  32. Choksi N, Desai H (2017) Synthesis of Biodegradable Polylactic Acid Polymer By Using Lactic Acid Monomer.International Journal of Applied Chemistry13

  33. Dimida S, Barca A, Cancelli N et al (2017) Effects of Genipin Concentration on Cross-Linked Chitosan Scaffolds for bone tissue Engineering: structural characterization and evidence of Biocompatibility features. Int J Polym Sci 2017:1–8. https://doi.org/10.1155/2017/8410750

    Article  CAS  Google Scholar 

  34. Kumar S, Koh J (2012) Physiochemical, Optical and Biological Activity of Chitosan-Chromone Derivative for Biomedical Applications. Int J Mol Sci 13:6102–6116. https://doi.org/10.3390/ijms13056102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mondéjar-López M, Rubio-Moraga A, López-Jimenez AJ et al (2022) Chitosan nanoparticles loaded with garlic essential oil: a new alternative to tebuconazole as seed dressing agent. Carbohydr Polym 277:118815. https://doi.org/10.1016/j.carbpol.2021.118815

    Article  CAS  PubMed  Google Scholar 

  36. Poerio A, Girardet T, Petit C et al (2021) Comparison of the Physicochemical Properties of Chitin extracted from Cicada orni Sloughs Harvested in three different years and characterization of the resulting Chitosan. Appl Sci 11:11278. https://doi.org/10.3390/app112311278

    Article  CAS  Google Scholar 

  37. Jiang X, Cai K, Zhang J et al (2011) Synthesis of a novel water-soluble chitosan derivative for flocculated decolorization. J Hazard Mater 185:1482–1488. https://doi.org/10.1016/j.jhazmat.2010.10.072

    Article  CAS  PubMed  Google Scholar 

  38. Norowski PA, Mishra S, Adatrow PC et al (2012) Suture pullout strength and in vitro fibroblast and RAW 264.7 monocyte biocompatibility of genipin crosslinked nanofibrous chitosan mats for guided tissue regeneration. J Biomed Mater Res A 100A:2890–2896. https://doi.org/10.1002/jbm.a.34224

    Article  CAS  Google Scholar 

  39. Nagahama H, Maeda H, Kashiki T et al (2009) Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel. Carbohydr Polym 76:255–260. https://doi.org/10.1016/j.carbpol.2008.10.015

    Article  CAS  Google Scholar 

  40. Julkapli NM, Ahmad Z, Akil HM, bin Mohamed AA (2010) X-Ray Diffraction Studies of Cross Linked Chitosan With Different Cross Linking Agents For Waste Water Treatment Application. In: AIP Conference Proceedings. pp 106–111

  41. QUIJADAGARRIDO I, MAZONARECHEDERRA IGLESIASGONZALEZV J, BARRALESRIENDA J (2007) The role played by the interactions of small molecules with chitosan and their transition temperatures. Glass-forming liquids: 1,2,3-Propantriol (glycerol). Carbohydr Polym 68:173–186. https://doi.org/10.1016/j.carbpol.2006.07.025

    Article  CAS  Google Scholar 

  42. Cobos M, González B, Fernández MJ, Fernández MD (2017) Chitosan-graphene oxide nanocomposites: Effect of graphene oxide nanosheets and glycerol plasticizer on thermal and mechanical properties. J Appl Polym Sci 134:45092. https://doi.org/10.1002/app.45092

    Article  CAS  Google Scholar 

  43. Tang W, Wang B, Li J et al (2019) Facile pyrolysis synthesis of ionic liquid capped carbon dots and subsequent application as the water-based lubricant additives. J Mater Sci 54:1171–1183. https://doi.org/10.1007/s10853-018-2877-0

    Article  CAS  Google Scholar 

  44. Tobolsky A, Catsiff E (1956) Elastoviscous properties of polyisobutylene (and other amorphous polymers) from stress–relaxation studies. IX. A summary of results. J Polym Sci 19:111–121. https://doi.org/10.1002/pol.1956.120199111

    Article  CAS  Google Scholar 

  45. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edition. Wiley, New York

  46. Abd El-Hady MM, Saeed SE-S (2020) Antibacterial Properties and pH sensitive swelling of Insitu formed silver-curcumin Nanocomposite Based Chitosan Hydrogel. Polym (Basel) 12:2451. https://doi.org/10.3390/polym12112451

    Article  CAS  Google Scholar 

  47. Rohindra DR, Nand A, v, Khurma JR (2004) Swelling properties of chitosan hydrogels. South Pac J Nat Appl Sci 22:32. https://doi.org/10.1071/SP04005

    Article  Google Scholar 

  48. OU A, BO I (2017) Chitosan Hydrogels and their glutaraldehyde-crosslinked counterparts as potential drug release and tissue Engineering Systems - synthesis, characterization, swelling kinetics and mechanism. J Phys Chem Biophys 07. https://doi.org/10.4172/2161-0398.1000256

  49. Butler MF, Clark AH, Adams S (2006) Swelling and Mechanical Properties of Biopolymer Hydrogels containing Chitosan and bovine serum albumin. Biomacromolecules 7:2961–2970. https://doi.org/10.1021/bm060133y

    Article  CAS  PubMed  Google Scholar 

  50. Dimida S, Demitri C, de Benedictis VM et al (2015) Genipin-cross-linked chitosan-based hydrogels: reaction kinetics and structure-related characteristics. J Appl Polym Sci 132. https://doi.org/10.1002/app.42256. :n/a-n/a

Download references

Acknowledgements

This research was supported by Auvergne Rhone Alpes programs “Pack Amb Int’l 2019 and Pack Amb Int’l 2021” CNRS pre-maturation project ‘BEPI”, by JSPS KAKENHI Grant Number 21H03344, and by Campus France Programme Polonium.

Author information

Authors and Affiliations

Authors

Contributions

I. Kondratowicz: validation, Investigation. I. Shalayel: Writing – original draft, Writing – review & editing. M. Nadolska: Formal analysis, Data curation, Writing – review & editing. S. Tsujimura: Formal analysis, Data curation. Y. Yamagata: Formal analysis, Data curation. I. Shitanda: Writing – original draft, Formal analysis, Data curation. A. Zebda: Conceptualization, Funding acquisition, Project administration, Resources, Supervision, Visualization, Writing – review & editing, Methodology.

Corresponding author

Correspondence to Ibrahim Shalayel.

Ethics declarations

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to the missing corresponding authorship symbol.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratowicz, I., Shalayel, I., Nadolska, M. et al. Impact of Lactic Acid and Genipin Concentration on Physicochemical and Mechanical Properties of Chitosan Membranes. J Polym Environ 31, 1221–1231 (2023). https://doi.org/10.1007/s10924-022-02691-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02691-z

Keywords

Navigation