Skip to main content

Advertisement

Log in

Performance of Boehmite Nanoparticles Reinforced Carboxymethyl Chitosan/Polyvinyl Alcohol Blend Nanocomposites Tailored Through Green Synthesis

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Herein, a carboxymethyl chitosan (CMCS)/polyvinyl alcohol (PVA) biopolymer blend reinforced with various fractions of boehmite nanoparticles (AlOOH) was prepared using the green method. The impact of nanoparticles on the structural, morphological, thermal, tensile strength, conductivity, and dielectric properties of biopolymer blend nanocomposite films were thoroughly examined. Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD) patterns demonstrated the effective interaction and successful inclusion of nanoparticles in the CMCS/PVA blend matrix. The SEM and optical images showed that the filler addition altered the surface morphology of the CMCS/PVA blend. Thermogravimetric analysis (TGA) showed a significant enhancement in the thermal stability of blend with the increase in boehmite content. The glass transition and melting temperature of the blend nanocomposites were significantly increased with the addition of nanoparticles as observed from DSC. The AC conductivity and dielectric constant of 7 wt% nanocomposite films were increased by 9.7 and 2.3 times respectively, in comparison to the pure blend. Conductivity studies show a significant increase in magnitudes of the real part of dielectric permittivity and dielectric loss tangent with the filler content. The decrease in activation energy with an increase in the content of nanofillers suggested the semiconducting nature of blend nanocomposites. The mechanical properties of blend nanocomposite films showed that the addition of boehmite improved the tensile strength and hardness, whereas the elongation at break decreased. The enhanced tensile strength, thermal and electrical properties of the blend nanocomposite films enable the fabrication of biosafe flexible electronic and charge storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12

Similar content being viewed by others

References

  1. Luckachan GE, Pillai CKS (2011) Biodegradable polymers—a review on recent trends and emerging perspectives. J Polym Environ 19:637–676

    Article  CAS  Google Scholar 

  2. Jaafar J, Siregar JP, Piah MBM, Cionita T, Adnan S, Rihayat T (2018) Influence of selected treatment on tensile properties of short pineapple leaf fiber reinforced tapioca resin biopolymer composites. J Polym Environ 26:4271–4281

    Article  CAS  Google Scholar 

  3. Gupta AP, Dev A, Kumar V (2012) Studies of novel chain linked biodegradable polymers. J Polym Environ 20:514–518

    Article  CAS  Google Scholar 

  4. Åkesson D, Kuzhanthaivelu G, Bohlén M (2021) Effect of a small amount of thermoplastic starch blend on the mechanical recycling of conventional plastics. J Polym Environ 29:985–991

    Article  Google Scholar 

  5. Radu ER, Panaitescu DM, Nicolae CA, Gabor RA, Rădiţoiu V, Stoian S, Alexandrescu E, Fierăscu R, Chiulan I (2021) The soil biodegradability of structured composites based on cellulose cardboard and blends of polylactic acid and polyhydroxybutyrate. J Polym Environ 29:2310–2320

    Article  CAS  Google Scholar 

  6. Ramesan MT, Subburaj M, Mathew G, Bahuleyan BK (2021) Utilization of copper sulphide nanoparticles for the development of cashew tree gum/ chitin biopolymer blend nanocomposites. J Thermoplast Compos Mater. https://doi.org/10.1177/08927057211046282

    Article  Google Scholar 

  7. Bailore NN, Balladka SK, Doddapaneni SJDS, Mudiyaru SR (2021) Fabrication of environmentally compatible biopolymer films of pullulan/piscean collagen/ZnO nanocomposite and their antifungal activity. J Polym Environ 29:1192–1201

    Article  CAS  Google Scholar 

  8. Scaffaro R, Dintcheva NT, Marino R, La Manitia FP (2012) Processing and properties of biopolymer/polyhydroxyalkanoates blends. J Polym Environ 20:267–272

    Article  CAS  Google Scholar 

  9. Mochane MJ, Sefadi JS, Motsoeneng TS, Mokoena TE, Mofokeng TG, Mokhena TC (2020) The effect of filler localization on the properties of biopolymer blends, recent advances: A review. Polym Compos 41:2958–2979

    Article  CAS  Google Scholar 

  10. Amruth K, Abhirami KM, Sankar S, Ramesan MT (2022) Synthesis, characterization, dielectric properties and gas sensing application of polythiophene/ chitosan nanocomposites. Inorg Chem Commun 136:322–337

    Article  Google Scholar 

  11. Ramesan MT, Siji C, Kalaprasad G, Bahuleyan BK, Al-Maghrabi MA (2018) Effect of silver doped zinc oxide as Nanofiller for the development of biopolymer nanocomposites from chitin and cashew Gum. J Polym Environ 26:2983–2991

    Article  CAS  Google Scholar 

  12. Gonçalves RC, da Silva DP, Signini R, Naves PL (2017) Inhibition of bacterial biofilms by carboxymethyl chitosan combined with silver, zinc and copper salts. Int J Biol Macromol 105:385–392

    Article  Google Scholar 

  13. An NT, Dong NT, Le Dung P (2009) Water-soluble N-carboxymethyl chitosan derivatives: Preparation, characteristics and its application. Carbohydr Polym 75:489–497

    Article  Google Scholar 

  14. Zhu A, Chan-Park MB, Dai S, Li L (2005) The aggregation behavior of O-carboxymethyl chitosan in dilute aqueous solution. Colloids Surf B 43:143–149

    Article  CAS  Google Scholar 

  15. Shariatinia Z (2018) Carboxymethyl chitosan: Properties and biomedical applications. Int J Biol Macromol 120:1406–1419

    Article  CAS  Google Scholar 

  16. Dayarian S, Zamani A, Moheb A, Masoomi M (2014) Physico-mechanical properties of cilms of chitosan, carboxymethyl chitosan, and their blends. J Polym Environ 22:409–416

    Article  CAS  Google Scholar 

  17. Xu Q, Wang P, Zhang Y, Li C (2022) Durable antibacterial and UV protective properties of cotton fabric coated with carboxymethyl chitosan and Ag/TiO2 composite nanoparticles. Fibers Polym 23:386–395

    Article  CAS  Google Scholar 

  18. Jimtaisong A, Saewan N (2014) Utilization of carboxymethyl chitosan in cosmetics. Int J Cosmet Sci 36:12–21

    Article  CAS  Google Scholar 

  19. Singha AS, Priya B, Pathania D (2015) Corn starch/poly (vinyl-alcohol) biocomposite blend films: mechanical properties, thermal behavior, fire retardancy, and antibacterial activity. Int J Polym Anal Charact 20:357–366

    Article  CAS  Google Scholar 

  20. Abdullah ZW, Dong Y, Davies IJ, Barbhuiya S (2017) PVA, PVA blends, and their nanocomposites for biodegradable packaging application. Polym Plast Technol Eng 56:1307–1344

    Article  CAS  Google Scholar 

  21. Wang LC, Chen XG, Xu QC, Liu CS, Yu LJ, Zhou YM (2008) Plasma protein adsorption pattern and tissue-implant reaction of poly (vinyl alcohol)/carboxymethyl-chitosan blend films. J Biomater Sci Polym Ed 19:113–129

    Article  CAS  Google Scholar 

  22. Wang LC, Chen XG, Zhong DY, Xu QC (2007) Study on poly (vinyl alcohol)/carboxymethyl-chitosan blend film as local drug delivery system. J Mater Sci Mater Med 18:1125–1133

    Article  CAS  Google Scholar 

  23. Wen L, Liang Y, Lin Z, Xie D, Zheng Z, Xu C, Lin B (2021) Design of multifunctional food packaging films based on carboxymethyl chitosan/polyvinyl alcohol crosslinked network by using citric acid as crosslinker. Polymer 230:124048

    Article  CAS  Google Scholar 

  24. Karger KJ, Lendvai L (2018) Polymer/boehmite nanocomposites: A review. J Appl Polym Sci 135:45573

    Article  Google Scholar 

  25. Lin T, Zhu L, Chen W, Wu S, Guo B, Jia D (2013) Reactivity of sulfide-containing silane toward boehmite and in situ modified rubber/boehmite composites by the silane. Appl Surf Sci 280:888–897

    Article  CAS  Google Scholar 

  26. Pedrazzoli D, Khumalo VM, Karger KJ, Pegoretti A (2014) Thermal, viscoelastic and mechanical behavior of polypropylene with synthetic boehmite alumina nanoparticles. Polym Test 35:92–100

    Article  CAS  Google Scholar 

  27. Pedrazzoli D, Tuba F, Khumalo VM, Pegoretti A, Karger KJ (2014) Mechanical and rheological response of polypropylene/boehmite nanocomposites. J Reinf Plast Compos 33:252–265

    Article  Google Scholar 

  28. Cai Y, Zhao M, Wang H, Li Y, Zhao Z (2014) Synthesis and properties of flame-retardant poly (vinyl alcohol)/pseudo-boehmite nanocomposites with high transparency and enhanced refractive index. Polym Degrad Stab 99:53–60

    Article  CAS  Google Scholar 

  29. Wang Y, Cen C, Chen J, Fu L (2020) MgO/carboxymethyl chitosan nanocomposite improves thermal stability, waterproof and antibacterial performance for food packaging. Carbohydr polym 236:116078

    Article  CAS  Google Scholar 

  30. Yin M, Lin X, Ren T, Li Z, Ren X, Huang TS (2018) Cytocompatible quaternized carboxymethyl chitosan/poly (vinyl alcohol) blend film loaded copper for antibacterial application. Int J Biol Macromol 120:992–998

    Article  CAS  Google Scholar 

  31. Chen Y, Cai W, Dang C, Fan J, Zhou J, Liu Z (2020) A facile sol–gel synthesis of chitosan–boehmite film with excellent acid resistance and adsorption performance for Pb (II). Chem Eng Res Des 161:332–339

    Article  CAS  Google Scholar 

  32. Suriyatem R, Auras RA, Rachtanapun P (2018) Improvement of mechanical properties and thermal stability of biodegradable rice starch–based films blended with carboxymethyl chitosan. Ind Crops Prod 122:37–48

    Article  CAS  Google Scholar 

  33. Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, AlMaadeed MA, Deshmukh RR, Pasha SK, Polu AR, Chidambaram K (2017) Fumed SiO2 nanoparticle reinforced biopolymer blend nanocomposites with high dielectric constant and low dielectric loss for flexible organic electronics. J Appl Polym Sci 134:44427

    Article  Google Scholar 

  34. Parvathi K, Bahuleyan BK, Ramesan MT (2018) Enhanced optical, thermal and electrical properties of chlorinated natural rubber/ zinc ferrite nanocomposites for flexible electrochemical devices. J Macromol Sci A 59:466–479

    Article  Google Scholar 

  35. Furhan RMT (2022) Enhanced dielectric properties, thermal stability and ammonia sensing performance of poly(diphenylamine)/ZnO nanocomposites via one step polymerization. J Appl Polym Sci 139:e52913

    Article  CAS  Google Scholar 

  36. Sheik S, Nagaraja GK (2018) Prashantha K (2018) Effect of silk fiber on the structural, thermal, and mechanical properties of PVA/PVP composite films. Polym Eng Sci 58:1923–1930

    Article  CAS  Google Scholar 

  37. El Miri N, Abdelouahdi K, Zahouily M, Fihri A, Barakat A, Solhy A, El Achaby M (2015) Bio-nanocomposite films based on cellulose nanocrystals filled polyvinyl alcohol/chitosan polymer blend. J Appl Polym Sci 132:42004

    Google Scholar 

  38. Sankar S, Ramesan MT (2022) Synthesis, characterization, conductivity and gas sensing performance of copolymer nanocomposites based on copper alumina and poly (aniline-co-pyrrole). Polym Eng Sci 62:2402–2410

    Article  CAS  Google Scholar 

  39. Parvathi K, Ramesan MT (2022) Compliant materials based on nickel oxide/ chlorinated natural rubber nanocomposites. Polym Compos 43:2628–2637

    Article  CAS  Google Scholar 

  40. Kumar S, Prajapati GK, Saroj AL, Gupta PN (2019) Structural, electrical and dielectric studies of nano-composite polymer blend electrolyte films based on (70–x) PVA–x PVP–NaI–SiO2. Phys B 554:158–164

    Article  CAS  Google Scholar 

  41. Rajeswari N, Selvasekarapandian S, Karthikeyan S, Prabu M, Hirankumar G, Nithya H, Sanjeeviraja C (2011) Conductivity and dielectric properties of polyvinyl alcohol–polyvinylpyrrolidone poly blend film using non-aqueous medium. J Non-Cryst Solids 357:3751–3756

    Article  CAS  Google Scholar 

  42. Roy S, Bardhan S, Pal K, Ghosh S, Mandal P, Das S, Das S (2018) Crystallinity mediated variation in optical and electrical properties of hydrothermally synthesized boehmite (γ-AlOOH) nanoparticles. J Alloys Compd 763:749–758

    Article  CAS  Google Scholar 

  43. Jothi MA, Vanitha D, Nallamuthu N, Manikandan A, Bahadur SA (2020) Investigations of lithium ion conducting polymer blend electrolytes using biodegradable cornstarch and PVP. Phys B 580:411940

    Article  Google Scholar 

  44. Abdelrazek EM, Abdelghany AM, Tarabiah AE, Zidan HM (2019) AC conductivity and dielectric characteristics of PVA/PVP nanocomposite filled with MWCNTs. J Mater Sci 30:15521–15533

    CAS  Google Scholar 

  45. Islam A, Imran Z, Yasin T, Gull N, Khan SM, Shafiq M, Sabir A, Munawar MA, Raza MH, Jamil T (2015) An investigation of ac impedance and dielectric spectroscopic properties of conducting chitosan-silane crosslinked-poly (vinyl alcohol) blended films. Mater Res 18:1256–1263

    Article  CAS  Google Scholar 

  46. Parvathi K, Bahuleyan BK, Ramesan MT (2022) Optical, thermal and temperature dependent electrical properties of chlorinated natural rubber/copper alumina nanocomposites for flexible electrochemical devices. Res Chem Intermed 48:3897–3914

    Article  CAS  Google Scholar 

  47. Mannu P, Palanisamy M, Bangaru G, Ramakrishnan S, Kandasami A, Kumar P (2019) Temperature-dependent AC conductivity and dielectric and impedance properties of ternary In–Te–Se nanocomposite thin films. Appl Phys A 125:1–3

    Article  Google Scholar 

  48. Sankar S, George A, Ramesan MT (2022) Copper alumina @ poly (aniline-co-indole) nanocomposites: synthesis, characterization, electrical properties and gas sensing applications. RSC Adv 12:17637–17644

    Article  CAS  Google Scholar 

  49. Rajeswari N, Selvasekarapandian S, Sanjeeviraja C, Kawamura J, Asath Bahadur SA (2014) Study on polymer blend electrolyte based on PVA/PVP with proton salt. Polym Bull 71:1061–1080

    Article  CAS  Google Scholar 

  50. Parvathi K, Ramesan MT (2022) Structure, properties and antibacterial behaviour of nickel oxide reinforced natural rubber nanocomposites for flexible electronic applications. J Appl Polymer Sci. https://doi.org/10.1002/app.53120

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support provided by University Grants Commission (UGC), India to carry out this research work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. KM: contributed to the material preparation, analysis and writing of the manuscript, while MTR contributed to the conception, resources, validation, writing, review and editing.

Corresponding author

Correspondence to M. T. Ramesan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meera, K., Ramesan, M.T. Performance of Boehmite Nanoparticles Reinforced Carboxymethyl Chitosan/Polyvinyl Alcohol Blend Nanocomposites Tailored Through Green Synthesis. J Polym Environ 31, 447–460 (2023). https://doi.org/10.1007/s10924-022-02649-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02649-1

Keywords

Navigation