Skip to main content
Log in

Recent Developments in Flame-Retardant Lignin-Based Biocomposite: Manufacturing, and characterization

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Lignin with a phenolic structure can act as a fire retardant, but different origins of lignin and extraction methods impact the fire behavior capabilities. The thermal characteristics of lignin, such as glass transition (Tg) temperature, thermal degradation, molecular weight, lignin purity, and phenolic content, influence the capability of lignin as a flame retardant (FR) by causing significant char residue. However, lignin faced significant constraints in the final polymer to meet industry requirements, with the main issue being a lack of homogeneity when blending lignin with polymeric matrices. To improve the FR performance of lignin, various advances have been taken such as altering lignin with nitrogen and/or phosphorus chemicals, as well as shrinking lignin to the nanoscale to reduce lignin aggregation with matrices and obtaining considerable FR behavior in which FR system, lignin can present as a single component, lignin-based composite, modified lignin, and nano lignin. The present review addresses the manufacture of lignin as FR and the attributes of the product with lignin added to the system. It also covers the structure, source, extraction technique, physical-chemical properties, and chemical modification of lignin as an FR source, as well as the basic principle of flame retardancy, influencing factors (current development and application till the industrial analysis need of FR). Throughout this review, it aids in the discovery of a better strategy to introduce lignin as a source of bio-based FR for achieving the low cost in the fabrication method of FR.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hobbs CE (2019) Polymers (Basel) 11(2). https://doi.org/10.3390/polym11020224

  2. Ridho MR, Agustiany E, Rahmi MD, Madyaratri E, Ghozali M, Restu WK, Falah F, Lubis MAR, Syamani FA, Nurhamiyah Y, Hidayati S, Sohail A, Karungamye P, Nawawi DS, Iswanto AH, Othman N, Aini N, Hussin MH, Sahakaro K, Hayeemasae N, Ali M, Fatriasari W (2022) Advances in Materials Science and Engineering 2022:1-33.https://doi.org/10.1155/2022/1363481

  3. Hussin MH, Appaturi JN, Poh NE, Latif NHA, Brosse N, Ziegler-Devin I, Vahabi H, Syamani FA, Fatriasari W, Solihat NN, Karimah A, Iswanto AH, Sekeri SH, Ibrahim MNM (2022) Int J Biol Macromol 200:303–326. https://doi.org/10.1016/j.ijbiomac.2022.01.007

    Article  CAS  PubMed  Google Scholar 

  4. Epa U (2018) The Air Pollution Consultant. United States Environmental Protection Energy, New York. US

    Google Scholar 

  5. Melro E, Filipe A, Sousa D, Medronho B, Romano A (2021) New J Chem 45(16):6986–7013. https://doi.org/10.1039/d0nj06234k

    Article  CAS  Google Scholar 

  6. Solihat NN, Sari FP, Falah F, Ismayati M, Lubis MAR, Fatriasari W, Santoso EB, Syafii W (2021) Jurnal Sylva Lestari 9(1). https://doi.org/10.23960/jsl191-22

  7. Li Y, Li F, Yang Y, Ge B, Meng F (2021) J Polym Eng 41(4):245–258. https://doi.org/10.1515/polyeng-2020-0268

    Article  CAS  Google Scholar 

  8. Solihat NN, Santoso EB, Karimah A, Madyaratri EW, Sari FP, Falah F, Iswanto AH, Ismayati M, Lubis MAR, Fatriasari W, Antov P, Savov V, Gajtanska M, Syafii W (2022) Polymers 14(3). https://doi.org/10.3390/polym14030491

  9. Doherty WOS, Mousavioun P, Fellows CM (2011) Ind Crops Prod 33(2):259–276. https://doi.org/10.1016/j.indcrop.2010.10.022

    Article  CAS  Google Scholar 

  10. Sameni J, Krigstin S, Rosa DS, Leao A, Sain M (2014) BioResources 9(1). https://doi.org/10.15376/biores.9.1.725-737

  11. Sen S, Patil S, Argyropoulos DS (2015) Green Chem 17(11):4862–4887. https://doi.org/10.1039/c5gc01066g

    Article  CAS  Google Scholar 

  12. Ramezani N, Sain M (2018) J Polym Environ 26(7):3109–3116

    Article  CAS  Google Scholar 

  13. Nadda A, Sharma S (2020)Springer Nature, London

  14. Mandlekar N, Cayla A, Rault F, Giraud S, Salaün F, Malucelli G, Guan J-P (2018) An Overview on the Use of Lignin and Its Derivatives in Fire Retardant Polymer Systems. Lignin - Trends and Applications. https://doi.org/10.5772/intechopen.72963

  15. Lia B, Zhanga X, Su R (2002) Polym Degrad Stab 75:35–44

    Article  Google Scholar 

  16. Yang H, Yu B, Xu X, Bourbigot S, Wang H, Song P (2020) Green Chem 22(7):2129–2161. https://doi.org/10.1039/d0gc00449a

    Article  CAS  Google Scholar 

  17. Xiao M, Zhou X, Zhang J, Ren Y (2020) J Text Res 41:182–188

    Google Scholar 

  18. Réti C, Casetta M, Duquesne S, Bourbigot S, Delobel R (2008) Polym Adv Technol 19(6):628–635. https://doi.org/10.1002/pat.1130

    Article  CAS  Google Scholar 

  19. De Chirico A, Armanini M, Chini P, Cioccolo G, Provasoli F, Audisio G (2003) Polym Degrad Stab 79(1):139–145. https://doi.org/10.1016/S0141-3910(02)00266-5

    Article  Google Scholar 

  20. Handika SO, Lubis MAR, Sari RK, Laksana RPB, Antov P, Savov V, Gajtanska M, Iswanto AH (2021) Mater (Basel) 14(22). https://doi.org/10.3390/ma14226850

  21. Insights GM (2020) (Lignin Market Size, By Product (Kraft Lignin, Lignosulphonates, Low Purity Lignin), By Application (Aromatics, Macromolecules), Industry Analysis Report, Regional Outlook, Lignin Downstream Potential (Vanillin, Carbon Fiber, Phenol, BTX), Application Potential, Price Trends, Competitive Market Share & Forecast, 2021–2027) https://www.gminsights.com/industry-analysis/lignin-market Accessed 3 March 2022

  22. Madyaratri EW, Ridho MR, Aristri MA, Lubis MAR, Iswanto AH, Nawawi DS, Antov P, Kristak L, Majlingová A, Fatriasari W (2022) Polymers 14(3):362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Voelker SL, Lachenbruch B, Meinzer FC, Strauss SH (2011) New Phytol 189(4):1096–1109. https://doi.org/10.1111/j.1469-8137.2010.03572.x

    Article  PubMed  Google Scholar 

  24. Youssefian S, Rahbar N (2015) Sci Rep 5:11116. https://doi.org/10.1038/srep11116

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zeng Y, Himmel ME, Ding S-Y (2017) Biotechnol Biofuels 10(1):263. https://doi.org/10.1186/s13068-017-0953-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen S, Lin S, Hu Y, Ma M, Shi Y, Liu J, Zhu F, Wang X (2018) Polym Adv Technol 29(12):3142–3150. https://doi.org/10.1002/pat.4436

    Article  CAS  Google Scholar 

  27. Zhang S, Li S-N, Wu Q, Li Q, Huang J, Li W, Zhang W, Wang S (2021) Compos Part B: Eng 212:108699. https://doi.org/10.1016/j.compositesb.2021.108699

    Article  CAS  Google Scholar 

  28. Zhang YM, Zhao Q, Li L, Yan R, Zhang J, Duan JC, Liu BJ, Sun ZY, Zhang MY, Hu W, Zhang NN (2018) RSC Adv 8(56):32252–32261. https://doi.org/10.1039/C8RA05598J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lu Y, Lu Y-C, Hu H-Q, Xie F-J, Wei X-Y, Fan X (2017) J Spectrosc 2017:1–15. https://doi.org/10.1155/2017/8951658

    Article  CAS  Google Scholar 

  30. Vásquez-Garay F, Carrillo-Varela I, Vidal C, Reyes-Contreras P, Faccini M, Teixeira Mendonça R (2021) Sustainability 13(5). https://doi.org/10.3390/su13052697

  31. Tolbert A, Akinosho H, Khunsupat R, Naskar AK, Ragauskas AJ (2014) Biofuels Bioprod Biorefin 8(6):836–856. https://doi.org/10.1002/bbb.1500

    Article  CAS  Google Scholar 

  32. Glasser WG (2019) Front Chem 7:565. https://doi.org/10.3389/fchem.2019.00565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Katahira R, Elder T, Beckham GT (2018) A Brief Introduction to Lignin Structure, in Lignin Valorization: Emerging Approaches. Energy and Environment Series. Royal Society of Chemistry. p. 1–20. https://doi.org/10.1039/9781788010351-00001

  34. Harman-Ware AE, Happs RM, Davison BH, Davis MF (2017) Biotechnol Biofuels 10(1):281. https://doi.org/10.1186/s13068-017-0962-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Garedew M, Lin F, Song B, DeWinter TM, Jackson JE, Saffron CM, Lam CH, Anastas PT (2020) Chemsuschem 13(17):4214–4237. https://doi.org/10.1002/cssc.202000987

    Article  CAS  PubMed  Google Scholar 

  36. Börcsök Z, Pásztory Z (2021) Eur J Wood Wood Product 79(3):511–526. https://doi.org/10.1007/s00107-020-01637-3

    Article  CAS  Google Scholar 

  37. Zhang L, Chen Z, Dong H, Fu S, Ma L, Yang X (2021) J Bioresources Bioprod 6(1):65–74. https://doi.org/10.1016/j.jobab.2021.01.005

    Article  CAS  Google Scholar 

  38. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) Chem Rev 110(6):3552–3599. https://doi.org/10.1021/cr900354u

    Article  CAS  PubMed  Google Scholar 

  39. Watkins D, Nuruddin M, Hosur M, Tcherbi-Narteh A, Jeelani S (2015) J Mater Res Technol 4(1):26–32. https://doi.org/10.1016/j.jmrt.2014.10.009

    Article  CAS  Google Scholar 

  40. Oriez V, Peydecastaing J, Pontalier P-Y (2020) Clean Technol 2(1):91–115

    Article  Google Scholar 

  41. Chung H, Washburn N (2016) Extraction and Types of Lignin. In: Faruk O, Sain M (eds) Lignin in Polymer Composites. William Andrew Publishing, pp 13–25

  42. Strassberger Z, Tanase S, Rothenberg G (2014) RSC Adv 4:25310

    Article  CAS  Google Scholar 

  43. Ľudmila H, Michal J, Andrea Å, Aleš H (2015) Wood Res 60(6):973–986

    Google Scholar 

  44. Aro T, Fatehi P (2017) ChemSusChem 10(9):1861-77. https://doi.org/10.1002/cssc.201700082

  45. Tribot A, Amer G, Abdou Alio M, de Baynast H, Delattre C, Pons A, Mathias J-D, Callois J-M, Vial C, Michaud P, Dussap C-G (2019) Eur Polymer J 112:228–240. https://doi.org/10.1016/j.eurpolymj.2019.01.007

    Article  CAS  Google Scholar 

  46. Stenius P (2000)Fapet Oy

  47. Jablonsky M, Kočiš J, Haz A, Surina I, Sládková A (2014) 5th International Scientific Conference Renewable Energy Sources 2014 Tatranské Matliare, High Tatras, Slovak Republic

  48. Laurichesse S, Avérous L (2014) Prog Polym Sci 39(7):1266–1290. https://doi.org/10.1016/j.progpolymsci.2013.11.004

    Article  CAS  Google Scholar 

  49. Kumar A, Anushree, Kumar J, Bhaskar T (2020) J Energy Inst 93(1):235–271. https://doi.org/10.1016/j.joei.2019.03.005

    Article  CAS  Google Scholar 

  50. Galkin MV, Samec JSM (2016) ChemSusChem 9(13):1544-58. https://doi.org/10.1002/cssc.201600237

  51. Sjòstròm E (1993)Academic Press, Inc., California

  52. Saito T, Perkins JH, Vautard F, Meyer HM, Messman JM, Tolnai B, Naskar AK (2014) ChemSusChem 7(1):221-8. https://doi.org/10.1002/cssc.201300509

  53. Chagas B, Wolski T, Vieira O (2019) Int J Adv Eng Res Sci 6. https://doi.org/10.22161/ijaers.6.4.1

  54. Marangon Jardim J, Hart P, Lucia L, Jameel H, Chang H (2020) Bioresources 15:5464 = 80. https://doi.org/10.15376/biores.15.3.5464-5480

  55. Abd El-Sayed E, El-Sakhawy M, Sakhawy M (2020) Nordic Pulp. Paper Res J 35. https://doi.org/10.1515/npprj-2019-0064. :215 – 30

  56. Al-Kaabi Z, Pradhan R, Thevathasan N, Arku P, Gordon A, Dutta A (2018) AIMS Energy 6:880–907. https://doi.org/10.3934/energy.2018.5.880

    Article  Google Scholar 

  57. Vishtal A, Kraslawski A (2011) BioResources 6:3547–3568. https://doi.org/10.15376/biores.6.3.3547-3568

    Article  Google Scholar 

  58. Ribeiro RA, Júnior SV, Jameel H, Chang H-M, Narron R, Jiang X, Colodette JL (2019) ACS Sustain Chem Eng 7(12):10274–10282. https://doi.org/10.1021/acssuschemeng.8b06635

    Article  CAS  Google Scholar 

  59. Deshpande R, Sundvall L, Grundberg H, Germgård U (2016) Nordic Pulp and Paper Research Journal 31:379 – 85. https://doi.org/10.3183/NPPRJ-2016-31-03-p379-385

  60. Li T, Takkellapati S (2018) Biofuels, Bioproducts and Biorefining 12(5):756 – 87. https://doi.org/10.1002/bbb.1913

  61. Luo H, Abu-Omar M (2017) Chemicals From Lignin. In: Abraham M (ed) Encyclopedia of Sustainable Technologies. Elsevier, Oxford, pp 573–585

    Chapter  Google Scholar 

  62. Lavrič G, Zamljen A, Juhant Grkman J, Jasiukaitytė-Grojzdek E, Grilc M, Likozar B, Gregor-Svetec D, Vrabič-Brodnjak U (2021) Polym (Basel) 13(24). https://doi.org/10.3390/polym13244443

  63. Nasrullah A, Bhat AH, Sada Khan A, Ajab H (2017) 9 - Comprehensive approach on the structure, production, processing, and application of lignin. In: Jawaid M, Md Tahir, P., Saba, N., Lignocellulosic Fibre and Biomass-Based Composite Materials. Woodhead Publishing. p. 165 – 78

  64. Pang T, Wang G, Sun H, Sui W, Si C (2021) Industrial Crops and Products 165. https://doi.org/10.1016/j.indcrop.2021.113442

  65. Rossberg C, Bremer M, Machill S, Koenig S, Kerns G, Boeriu C, Windeisen E, Fischer S (2015) Industrial Crops and Products 73:81 – 9. https://doi.org/10.1016/j.indcrop.2015.04.001

  66. Bhardwaj N, Goyal SK, Gupta A, Upadhyaya JS, Ray AK (2005) Appita J 58:180–185

    CAS  Google Scholar 

  67. Omer SH, Khider TO, Elzaki OT, Mohieldin SD, Shomeina SK (2019) BMC Chem Eng 1(1):6. https://doi.org/10.1186/s42480-019-0005-9

    Article  Google Scholar 

  68. Windeisen E, Wegener G (2012) 10.15 - Lignin as Building Unit for Polymers. In: Matyjaszewski KMM (ed) Polymer Science: A Comprehensive Reference. Elsevier, Amsterdam, pp 255–265

    Chapter  Google Scholar 

  69. Tutus A, Deniz I, Hudaverdi E (2004) Pak J Biol Sci. https://doi.org/10.3923/pjbs.2004.1350.1354

    Article  Google Scholar 

  70. Shao S, Wu C, Chen K (2017) BioResources 12:4867–4880

    CAS  Google Scholar 

  71. Rossberg C, Janzon R, Saake B, Leschinsky M (2019)BioResourcesVol 14(2)

  72. Patel J, Parsania P (2018) Characterization, testing, and reinforcing materials of biodegradable composites. In: Shimpi N, Biodegradable and Biocompatible Polymer Composites. Woodhead Publishing. p. 55–79

  73. Irvine GM (1985) Wood Sci Technol 19(2):139–149. https://doi.org/10.1007/BF00353074

    Article  CAS  Google Scholar 

  74. Wang R-M, Zheng S-R, Zheng Y-P (2011) 3 - Matrix materials. In: Wang R-M, Zheng S-R, Zheng Y-P, Polymer Matrix Composites and Technology. Woodhead Publishing. p. 101–548. https://doi.org/10.1533/9780857092229.1.101

  75. Abu Ghalia M, Dahman Y (2017) Synthesis and utilization of natural fiber-reinforced poly (lactic acid) bionanocomposites. In: Jawaid MMTPSN, Lignocellulosic Fibre and Biomass-Based Composite Materials. Woodhead Publishing. p. 313 – 45

  76. Abdelaziz OY, Brink DP, Prothmann J, Ravi K, Sun M, García-Hidalgo J, Sandahl M, Hulteberg CP, Turner C, Lidén G, Gorwa-Grauslund MF (2016) Biotechnol Adv 34(8):1318–1346. https://doi.org/10.1016/j.biotechadv.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  77. Garguiak JD, Lebo SE (1999) Commercial Use of Lignin-Based Materials. Lignin: Historical, Biological, and Materials Perspectives. ACS Symposium Series, vol 742: American Chemical Society. p. 304 – 20. https://doi.org/10.1021/bk-2000-0742.ch015

  78. Hatakeyama H, Hatakeyama T (2010) Lignin Structure, Properties, and Applications. In: Abe ADKKS (ed) Biopolymers: Lignin, Proteins, Bioactive Nanocomposites. Springer, Berlin, Heidelberg, pp 1–63

    Google Scholar 

  79. Baumberger S, Abaecherli A, Fasching M, Gellerstedt G, Gosselink R, Hortling B, Li J, Saake B, Jong Ed (2007) 61(4):459–68. https://doi.org/10.1515/HF.2007.074

  80. Asikkala J, Tamminen T, Argyropoulos DS (2012) J Agric Food Chem 60(36):8968–8973. https://doi.org/10.1021/jf303003d

    Article  CAS  PubMed  Google Scholar 

  81. Sarkanen S, Teller DC, Abramowski E, McCarthy JL (1982) Macromolecules 15(4):1098–1104

    Article  CAS  Google Scholar 

  82. Fredheim GE, Braaten SM, Christensen BE (2002) J Chromatogr A 942(1–2):191–199. https://doi.org/10.1016/s0021-9673(01)01377-2

    Article  CAS  PubMed  Google Scholar 

  83. Brodin I, Sjöholm E, Gellerstedt G (2009) 63(3):290–7. https://doi.org/10.1515/HF.2009.049

  84. Nascimento EA, Morais SA, Machado AE, Veloso D (1992) J Braz Chem Soc 3(3):61–64

    Article  CAS  Google Scholar 

  85. Morais SA, Nascimento EA, Pilo-Veloso D (1991) J Braz Chem Soc 2:129–132

    Article  CAS  Google Scholar 

  86. Vahabi H, Laoutid F, Mehrpouya M, Saeb MR, Dubois P (2021) Mater Sci Engineering: R: Rep 144:100604. https://doi.org/10.1016/j.mser.2020.100604

    Article  Google Scholar 

  87. Costes L, Laoutid F, Brohez S, Dubois P (2017) Mater Sci Engineering: R: Rep 117:1–25. https://doi.org/10.1016/j.mser.2017.04.001

    Article  Google Scholar 

  88. ISO 4589-2:2017(E) (2017) Determination of Burning Behaviour by Oxygen Index – Part 2: Ambient-Temperature Test Geneva. International Organization for Standardization

  89. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P (2009) Mater Sci Engineering: R: Rep 63(3):100–125. https://doi.org/10.1016/j.mser.2008.09.002

    Article  CAS  Google Scholar 

  90. ASTM D7309-21 (2021) Standard Test Method for Determining Flammability Characteristics of Plastics and Other. Solid Materials Using Microscale Combustion Calorimetry ASTM International

  91. Sonnier R, Vahabi H, Ferry L, Lopez-Cuesta JM (2012) Pyrolysis-Combustion Flow Calorimetry: A Powerful Tool To Evaluate the Flame Retardancy of Polymers. Fire and Polymers VI: New Advances in Flame Retardant Chemistry and Science. ACS Symposium Series, vol 1118: American Chemical Society. p. 361 – 90. https://doi.org/10.1021/bk-2012-1118.ch024

  92. Hao F, Geng W, Zhang J, Liu Q, Ding B (2019) Wool Text J 47(2):80–85

    Google Scholar 

  93. Huang C, He J, Liang C, Tang S, Yong Q (2019) J Forestry Eng 4(1):17–26

    Google Scholar 

  94. Lizundia E, Sipponen MH, Greca LG, Balakshin M, Tardy BL, Rojas OJ, Puglia D (2021) Green Chem 23(18):6698–6760. https://doi.org/10.1039/D1GC01684A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Song P, Cao Z, Fu S, Fang Z, Wu Q, Ye J (2011) Thermochimica acta 518(1):59–65. https://doi.org/10.1016/j.tca.2011.02.007

    Article  CAS  Google Scholar 

  96. Canetti M, Bertini F, De Chirico A, Audisio G (2006) Polym Degrad Stab 91(3):494–498. https://doi.org/10.1016/j.polymdegradstab.2005.01.052

    Article  CAS  Google Scholar 

  97. Fernandes DM, Winkler Hechenleitner AA, Job AE, Radovanocic E, Gómez Pineda EA (2006) Polym Degrad Stab 91(5):1192–1201. https://doi.org/10.1016/j.polymdegradstab.2005.05.024

    Article  CAS  Google Scholar 

  98. Bai J, Xue B, Yang Y (2017) Eng Plast Application 45(7):119–123

    CAS  Google Scholar 

  99. Verdolotti L, Oliviero M, Lavorgna M, Iannace S, Camino G, Vollaro P, Frache A (2016) Polym Degrad Stab 134. https://doi.org/10.1016/j.polymdegradstab.2016.10.001. :115 – 25

  100. Cayla A, Rault F, Giraud S, Salaün F, Sonnier R, Dumazert L (2019) Materials (Basel) 12(7). https://doi.org/10.3390/ma12071146

  101. Costes L, Laoutid F, Aguedo M, Richel A, Brohez S, Delvosalle C, Dubois P (2016) Eur Polymer J. https://doi.org/10.1016/j.eurpolymj.2016.10.003. 84:652 – 67

    Article  Google Scholar 

  102. Dorez G, Otazaghine B, Taguet A, Ferry L, Lopez-Cuesta JM (2013) Journal of Analytical and Applied Pyrolysis 105. https://doi.org/10.1016/j.jaap.2013.10.011

  103. Ferry L, Dorez G, Taguet A, Otazaghine B, Lopez-Cuesta JM (2015) Polymer Degradation and Stability 113:135 – 43. https://doi.org/10.1016/j.polymdegradstab.2014.12.015

  104. Prieur B, Meub M, Wittemann M, Klein R, Bellayer S, Fontaine G, Bourbigot S (2016) Polym Degrad Stab 127:32–43

    Article  CAS  Google Scholar 

  105. Mendis G, Weiss S, Korey M, Boardman C, Dietenberger M, Youngblood J, Howarter J (2016) Green Mater 4(4):150–159

    Article  Google Scholar 

  106. Fu RL, Cheng XS (2011) Adv Mater Res 236:482–485

    Article  Google Scholar 

  107. Zhang R, Xiao X, Tai Q, Huang H, Hu Y (2012) Polym Eng Sci 52(12):2620–2626. https://doi.org/10.1002/pen.23214

    Article  CAS  Google Scholar 

  108. Costes L, Laoutid F, Brohez S, Delvosalle C, Dubois P (2017) Eur Polymer J 94:270–285. https://doi.org/10.1016/j.eurpolymj.2017.07.018

    Article  CAS  Google Scholar 

  109. Yu Y, Jin C, Fu S, Zhao L, Wu Q, Jiewang Y (2012) Ind Eng Chem Res 51:12367–12374. https://doi.org/10.1021/ie301953x

    Article  CAS  Google Scholar 

  110. Zhu H, Peng Z, Chen Y, Li G, Wang L, Tang Y, Pang R, Khan ZUH, Wan P (2014) RSC Adv 4(98):55271–55279. https://doi.org/10.1039/C4RA08429B

    Article  CAS  Google Scholar 

  111. Zhou S, Tao R, Dai P, Luo Z, He M (2020) Polym Compos 41(5):2025–2035. https://doi.org/10.1002/pc.25517

    Article  CAS  Google Scholar 

  112. Wu W, He H, Liu T, Wei R, Cao X, Sun Q, Venkatesh S, Yuen RKK, Roy VAL, Li RKY (2018) Composites Science and Technology 168:246 – 54. https://doi.org/10.1016/j.compscitech.2018.09.024

  113. Zhong R, Lin X, Huang S, Xiong L, Jin Y (2019) Polym Mater Sci Eng 35(12):143–148

    Article  CAS  Google Scholar 

  114. Liu L, Huang G, Song P, Yu Y, Fu S (2016) ACS Sustain Chem Eng 4(9):4732–4742

    Article  CAS  Google Scholar 

  115. Liu L, Qian M, Song PA, Huang G, Yu Y, Fu S (2016) ACS Sustain Chem Eng 4(4):2422–2431

    Article  CAS  Google Scholar 

  116. Cao Z, Zhang Y, Song P, Cai Y, Guo Q, Fang Z, Peng M (2011) J Anal Appl Pyrol 92(2):339–346. https://doi.org/10.1016/j.jaap.2011.07.007

    Article  CAS  Google Scholar 

  117. Visakh PM, Arao Y (2015)Springer, Switzerland

  118. Jineesh A, Mohapatra S (2018) Thermal Properties of Polymer–Carbon Nanocomposites. p. 235 – 70. https://doi.org/10.1007/978-981-13-2688-2_7

  119. Vahidi G, Bajwa DS, Shojaeiarani J, Stark N, Darabi A (2021) J Appl Polym Sci 138(12):50050. https://doi.org/10.1002/app.50050

    Article  CAS  Google Scholar 

  120. Vahabi H, Brosse N, Latif NHA, Fatriasari W, Solihat NN, Hashimd R, Hussin MH, Laoutid F, Saeb MR (2021) Chap. 24-Nanolignin in materials science and technology-does flame retardancy matter? In: al SSKe, Biopolymeric Nanomaterials: Fundamental and Applications. Elsevier, pp 515–550

  121. Wang X, Ji S-L, Wang X-Q, Bian H-Y, Lin L-R, Dai H-Q, Xiao H (2019) J Mater Chem C 7(45):14159–14169. https://doi.org/10.1039/C9TC04961D

    Article  CAS  Google Scholar 

  122. Yu H, Zhan W, Liu Y (2020) Waste and Biomass Valorization 11(8):4561–9. https://doi.org/10.1007/s12649-019-00763-1

  123. Chollet B, Lopez-Cuesta JM, Laoutid F, Ferry L (2019) Mater (Basel) 12(13). https://doi.org/10.3390/ma12132132

  124. Lu W, Li Q, Zhang Y, Yu H, Hirose S, Hatakeyama H, Matsumoto Y, Jin Z (2018) J Wood Sci 64(3):287–293. https://doi.org/10.1007/s10086-018-1701-4

    Article  CAS  Google Scholar 

  125. Hu W, Zhang Y, Qi Y, Wang H, Liu B, Zhao Q, Zhang J, Duan J, Zhang L, Sun Z, Liu B (2020) Macromol Mater Eng 305(5). https://doi.org/10.1002/mame.201900840

  126. Wu Q, Ran F, Dai L, Li C, Li R, Si C (2021) Int J Biol Macromol 190:390–395. https://doi.org/10.1016/j.ijbiomac.2021.08.233

    Article  CAS  PubMed  Google Scholar 

  127. He T, Chen F, Zhu W, Yan N (2022) Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2022.04.089

    Article  PubMed  PubMed Central  Google Scholar 

  128. Widsten P, Tamminen T, Paajanen A, Hakkarainen T, Liitiä T (2021) Holzforschung 75(6):584–590. https://doi.org/10.1515/hf-2020-0147

    Article  CAS  Google Scholar 

  129. Granata A, Argyropoulos DS (1995) J Agric Food Chem 43(6):1538–1544. https://doi.org/10.1021/jf00054a023

    Article  CAS  Google Scholar 

  130. Mandlekar N, Malucelli G, Cayla A, Rault F, Giraud S, Salaün F, Guan J (2018) Polym Degrad Stab 153:63–74. https://doi.org/10.1016/j.polymdegradstab.2018.04.019

    Article  CAS  Google Scholar 

  131. Xiong X, Niu Y, Zhou Z, Ren J (2020) Polymers 12(9):1–11. https://doi.org/10.3390/polym12092007

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Deputy for Strengthening Research and Development, Ministry of Research and Technology in the National Competitive Research grant from the Deputy of Strengthening Research and Development, Ministry of Research and Technology/National Research and Innovation Agency 2021 Fiscal Year (95/UN5.2.3.1/PPM/KP-DRPM/2021) and Fundamental Research Grant Scheme (FRGS) provide by Ministry of Higher Education, Malaysia (FRGS/1/2018/WAB07/UPM//1).This study was supported by a cooperation agreement No: 001/Greenei-KS/VII/2021 and B-6022/III/LS.01.01/07/2021 betweem Resaerch Center for Biomaterial and PT Greenei Alam Indonesia FY 2021-2023.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection and analysis were performed by [Widya Fatriasari], [Alif Faturahman Hidayat], [Nissa Nurfajrin Solihat], [Azman Mohammad Taib], [M. Hazwan Hussin], [Lee Seng Hua] and [Syeed SaifulAzry Osman Al Edrus]. The first draft of the manuscript was written by [Nissa Nurfajrin Solihat], [Widya Fatriasari], [Azman Mohammad Taib], [M. Hazwan Hussin], [Henri Vahabi], [Lee Seng Hua], and [Muhammad Aizat Abdul Ghani] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Seng Hua Lee or Widya Fatriasari.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solihat, N.N., Hidayat, A.F., Taib, M.N.A.M. et al. Recent Developments in Flame-Retardant Lignin-Based Biocomposite: Manufacturing, and characterization. J Polym Environ 30, 4517–4537 (2022). https://doi.org/10.1007/s10924-022-02494-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02494-2

Keywords

Navigation