Skip to main content
Log in

The Impact of the Macaíba Components Addition on the Biodegradation Acceleration of Poly (Ɛ-Caprolactone) (PCL)

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Nowadays, there is a need to obtain eco-friendly materials, especially plastics that are responsible for most of the environmental pollution. In this regard, poly(ɛ-caprolactone) PCL biocomposites with 10wt% of the oil (O) and/or 10wt% of the flour (F) extracted from the macaíba almond were produced in order to carry out a study of this polymer biodegradation acceleration. Mechanical properties (impact, traction and flexural), differential scanning calorimetry (DSC), thermogravimetric (TGA), water absorption, contact angle and analysis by optical microscopy (OM) and scanning electronics (SEM) were evaluated. Through these analyzes, it was noted that in the PCL–O biocomposite, the oil acted as a plasticizer in the PCL and in the PCL–FO biocomposite, there was an interaction among both phases. The samples biodegradation took place in accordance with ASTM G160-03 by burying impact specimens in compost for 60 days. The PCL–F biocomposite showed a mass loss of approximately 45%, followed by PCL–FO, with a loss of approximately 25%, both compositions also presented a rough morphology, with cracks and pores presence due to biodegradation from the microorganism action. These results have shown that the flour obtained from the macaíba almond is a promising agent for accelerating the PCL biodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Wit W de, Hamilton A, Scheer R, et al (2019) Solucionar a poluição plástica: Trasnparência e responsabilização

  2. Kumar M, Mohanty S, Nayak SK, Rahail Parvaiz M (2010) Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Bioresour Technol 101:8406–8415. https://doi.org/10.1016/j.biortech.2010.05.075

    Article  CAS  Google Scholar 

  3. da Silva FA, Rabelo D (2017) O Uso Sustentável de Polímeros. Rev Process Químicos 11:9–16. https://doi.org/10.19142/rpq.v11i21.387

    Article  Google Scholar 

  4. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Green Chem 297:803–807

    CAS  Google Scholar 

  5. Roda A, Matias AA, Paiva A, Duarte ARC (2019) Polymer science and engineering using deep eutectic solvents. Polymers (Basel) 11:1–22. https://doi.org/10.3390/polym11050912

    Article  CAS  Google Scholar 

  6. Keskin G, Klzll G, Bechelany M et al (2017) Potential of polyhydroxyalkanoate (PHA) polymers family as substitutes of petroleum based polymers for packaging applications and solutions brought by their composites to form barrier materials. Pure Appl Chem 89:1841–1848. https://doi.org/10.1515/pac-2017-0401

    Article  CAS  Google Scholar 

  7. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277:1–24. https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1%3c1::AID-MAME1%3e3.0.CO;2-W

    Article  Google Scholar 

  8. Muthuraj R, Misra M, Mohanty AK (2015) Hydrolytic degradation of biodegradable polyesters under simulated environmental conditions. J Appl Polym Sci 132:1–13. https://doi.org/10.1002/app.42189

    Article  CAS  Google Scholar 

  9. Alshehrei F (2017) Biodegradation of synthetic and natural plastic by microorganisms. J Appl Environ Microbiol 5:8–19. https://doi.org/10.12691/jaem-5-1-2

    Article  CAS  Google Scholar 

  10. Cerruti P, Santagata G, Gomez d’Ayala G et al (2011) Effect of a natural polyphenolic extract on the properties of a biodegradable starch-based polymer. Polym Degrad Stab 96:839–846. https://doi.org/10.1016/j.polymdegradstab.2011.02.003

    Article  CAS  Google Scholar 

  11. Van der Schueren L, De Meyer T, Steyaert I et al (2013) Polycaprolactone and polycaprolactone/chitosan nanofibres functionalised with the pH-sensitive dye Nitrazine Yellow. Carbohydr Polym 91:284–293. https://doi.org/10.1016/j.carbpol.2012.08.003

    Article  CAS  Google Scholar 

  12. Sajkiewicz P, Heljak MK, Gradys A et al (2018) Degradation and related changes in supermolecular structure of poly(caprolactone) in vivo conditions. Polym Degrad Stab 157:70–79. https://doi.org/10.1016/j.polymdegradstab.2018.09.023

    Article  CAS  Google Scholar 

  13. Hajiali F, Tajbakhsh S, Shojaei A (2018) Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review. Polym Rev 58:164–207. https://doi.org/10.1080/15583724.2017.1332640

    Article  CAS  Google Scholar 

  14. Van der Schueren L, De Schoenmaker B, Kalaoglu ÖI, De Clerck K (2011) An alternative solvent system for the steady state electrospinning of polycaprolactone. Eur Polym J 47:1256–1263. https://doi.org/10.1016/j.eurpolymj.2011.02.025

    Article  CAS  Google Scholar 

  15. Bezerra EB, França DC, De Souza Morais DD et al (2017) Processing and properties of PCL/Cotton linter compounds. Mater Res 20:317–325. https://doi.org/10.1590/1980-5373-MR-2016-0084

    Article  CAS  Google Scholar 

  16. Sanjay MR, Madhu P, Jawaid M et al (2018) Characterization and properties of natural fiber polymer composites: a comprehensive review. J Clean Prod 172:566–581. https://doi.org/10.1016/j.jclepro.2017.10.101

    Article  CAS  Google Scholar 

  17. Bazzo BR, de Carvalho LM, Carazzolle MF et al (2018) Development of novel EST-SSR markers in the macaúba palm (Acrocomia aculeata) using transcriptome sequencing and cross-species transferability in Arecaceae species. BMC Plant Biol 18:1–10. https://doi.org/10.1186/s12870-018-1509-9

    Article  CAS  Google Scholar 

  18. Bora PS, Rocha RVM (2004) Macaiba Palm: fatty and amino acids composition of fruits. Cienc y Tecnol Aliment 4:158–162. https://doi.org/10.1080/11358120409487755

    Article  CAS  Google Scholar 

  19. Abreu IS, Carvalho CR, Carvalho GMA, Motoike SY (2011) First karyotype, DNA C-value and AT/GC base composition of macaw palm (Acrocomia aculeata, Arecaceae) a promising plant for biodiesel production. Aust J Bot 59:149–155. https://doi.org/10.1071/BT10245

    Article  Google Scholar 

  20. Sanjinez-Argandoña EJ, Chuba CAM (2011) Biometrical, physical and chemical characterization of bocaiuva (Acrocomia aculeata (Jacq.) lodd. ex mart) palm fruits. Rev Bras Frutic 33:1023–1028. https://doi.org/10.1590/S0100-29452011000300040

    Article  Google Scholar 

  21. Siqueira DD, Luna CBB, Araújo EM et al (2019) Biocomposites based on PCL and macaiba fiber. Detailed characterization of main properties. Mater Res Express 6:095335. https://doi.org/10.1088/2053-1591/ab3496

    Article  CAS  Google Scholar 

  22. Ciconini G, Favaro SP, Roscoe R et al (2013) Biometry and oil contents of Acrocomia aculeata fruits from the Cerrados and Pantanal biomes in Mato Grosso do Sul, Brazil. Ind Crops Prod 45:208–214. https://doi.org/10.1016/j.indcrop.2012.12.008

    Article  Google Scholar 

  23. Siqueira DD, Luna CBB, Ferreira ESB et al (2020) Tailored PCL/Macaíba fiber to reach sustainable biocomposites. J Mater Res Technol 9:9691–9708. https://doi.org/10.1016/j.jmrt.2020.06.066

    Article  CAS  Google Scholar 

  24. Hiane PA, Ramos Filho MM, Ramos MIL, Macedo MLR (2005) Bocaiúva, Acrocomia aculeata (Jacq.) Lodd., pulp and kernel oils: characterization and fatty acid composition. Braz J Food Technol 8:256–259

    CAS  Google Scholar 

  25. Lescano CH, Oliveira IP, Silva LR et al (2015) Nutrients content, characterization and oil extraction from Acrocomia aculeata (Jacq.) Lodd. fruits. Afr J Food Sci 9:113–119. https://doi.org/10.5897/ajfs2014.1212

    Article  Google Scholar 

  26. do Amaral FP, Broetto F, Batistella CB, Jorge SMA (2011) Extração e Caracterização Qualitativas do Óleo da Polpa e Amendoas de Frutos de Macaúba [Acrocomia aculeata (Jacq) Lodd. ex Mart] Coletada na Região de Botucatu - SP. Energ NA Agric 26:12. https://doi.org/10.17224/EnergAgric.2011v26n1p12-20

    Article  Google Scholar 

  27. Trentini CP, Oliveira DM, Zanette CM, da Silva C (2016) Low-pressure solvent extraction of oil from macauba (Acrocomia aculeata) pulp: characterization of oil and defatted meal. Ciência Rural 46:725–731. https://doi.org/10.1590/0103-8478cr20150740

    Article  CAS  Google Scholar 

  28. Beltrami LVR, Cristine Scienza L, Zattera AJ (2014) Efeito do tratamento alcalino de fibras de Curauá sobre as propriedades de compósitos de matriz biodegradável TT - Effect of the alkaline treatments of Curauá fiber on the properties of biodegradable matrix composites. Polímeros 24:388–394. https://doi.org/10.4322/polimeros.2014.024

    Article  CAS  Google Scholar 

  29. Pracella M, Haque MM-U, Paci M, Alvarez V (2016) Property tuning of poly(lactic acid)/cellulose bio-composites through blending with modified ethylene-vinyl acetate copolymer. Carbohydr Polym 137:515–524. https://doi.org/10.1016/j.carbpol.2015.10.094

    Article  CAS  Google Scholar 

  30. Mei LH, Oliveira N (2017) Caracterização de um compósito polimérico biodegradável utilizando Poli (ϵ-caprolactona) e borra de café. Polimeros 27:99–109. https://doi.org/10.1590/0104-1428.2139

    Article  Google Scholar 

  31. Sarasini F, Tirillò J, Puglia D et al (2017) Biodegradable polycaprolactone-based composites reinforced with ramie and borassus fibres. Compos Struct 167:20–29. https://doi.org/10.1016/j.compstruct.2017.01.071

    Article  Google Scholar 

  32. Hejna A, Formela K, Saeb MR (2015) Processing, mechanical and thermal behavior assessments of polycaprolactone/agricultural wastes biocomposites. Ind Crops Prod 76:725–733. https://doi.org/10.1016/j.indcrop.2015.07.049

    Article  CAS  Google Scholar 

  33. Samouh Z, Molnar K, Boussu F et al (2019) Mechanical and thermal characterization of sisal fiber reinforced polylactic acid composites. Polym Adv Technol 30:529–537. https://doi.org/10.1002/pat.4488

    Article  CAS  Google Scholar 

  34. Wang G, Zhang D, Li B et al (2019) Strong and thermal-resistance glass fiber-reinforced polylactic acid (PLA) composites enabled by heat treatment. Int J Biol Macromol 129:448–459. https://doi.org/10.1016/j.ijbiomac.2019.02.020

    Article  CAS  Google Scholar 

  35. Wellen RMR, Canedo EL, Rabello MS (2015) Melting and crystallization of poly(3-hydroxybutyrate)/carbon black compounds. Effect of heating and cooling cycles on phase transition. J Mater Res 30:3211–3226. https://doi.org/10.1557/jmr.2015.287

    Article  CAS  Google Scholar 

  36. Dulnik J, Denis P, Sajkiewicz P et al (2016) Biodegradation of bicomponent PCL/gelatin and PCL/collagen nanofibers electrospun from alternative solvent system. Polym Degrad Stab 130:10–21. https://doi.org/10.1016/j.polymdegradstab.2016.05.022

    Article  CAS  Google Scholar 

  37. Santos Filho EAD, Medeiros KMD, Araújo EM et al (2019) Membranes of polyamide 6/clay/salt for water/oil separation. Mater Res Express. https://doi.org/10.1088/2053-1591/ab3754

    Article  Google Scholar 

  38. Alvarez VA, Ruscekaite RA, Vázquez A (2003) Mechanical properties and water absorption behavior of composites made from a biodegradable matrix and alkaline-treated sisal fibers. J Compos Mater 37:1575–1588. https://doi.org/10.1177/002199803035180

    Article  CAS  Google Scholar 

  39. Siqueira DD, Luna CBB, Araújo EM et al (2019) Biodegradable compounds of poly (Ɛ-Caprolactone)/montmorillonite clays. Mater Res. https://doi.org/10.1590/1980-5373-mr-2018-0813

    Article  Google Scholar 

  40. Bhat DK, Kumar MS (2006) Biodegradability of PMMA blends with some cellulose derivatives. J Polym Environ 14:385–392. https://doi.org/10.1007/s10924-006-0032-5

    Article  CAS  Google Scholar 

  41. Tudorachi N, Cascaval CN, Rusu M (2000) Biodegradable polymer blends based on polyethylene and natural polymers. Degradation in soil. J Polym Eng 20:287–304. https://doi.org/10.1515/POLYENG.2000.20.4.287

    Article  CAS  Google Scholar 

  42. Kamiya M, Asakawa S, Kimura M (2007) Molecular analysis of fungal communities of biodegradable plastics in two Japanese soils. Soil Sci Plant Nutr 53:568–574. https://doi.org/10.1111/j.1747-0765.2007.00169.x

    Article  CAS  Google Scholar 

  43. Coetzee L, Tiedt LR (2013) Overview of the genus Afroleius Mahunka, 1984 (Acari, Oribatida). Acarologia 53:163–173. https://doi.org/10.1051/acarologia/20132085

    Article  Google Scholar 

  44. Norton R, Behan-Pelletier V (2020) Two unusual new species of Caleremaeus (Acari: Oribatida) from eastern North America, with redescription of C. retractus and reevaluation of the genus. Acarologia. https://doi.org/10.24349/acarologia/20204375

    Article  Google Scholar 

  45. Šerá J, Serbruyns L, De Wilde B, Koutný M (2020) Accelerated biodegradation testing of slowly degradable polyesters in soil. Polym Degrad Stab 171:109031. https://doi.org/10.1016/j.polymdegradstab.2019.109031

    Article  CAS  Google Scholar 

  46. Leite MCAM, Furtado CRG, Couto LO et al (2010) Avaliação da biodegradação de compósitos de poli(ε-caprolactona)/fibra de coco verde. Polimeros 20:339–344. https://doi.org/10.1590/S0104-14282010005000063

    Article  CAS  Google Scholar 

  47. Campillo-Fernández AJ, González-Reed P, Vidaurre A, Castilla-Cortázar I (2020) Poly(-caprolactone)/graphene oxide composite systems: a comparative study on hydrolytic degradation at extreme pH values. Mater Express 10:892–902. https://doi.org/10.1166/mex.2020.1728

    Article  CAS  Google Scholar 

  48. Jiang S, Ji X, An L, Jiang B (2001) Crystallization behavior of PCL in hybrid confined environment. Polymer (Guildf) 42:3901–3907. https://doi.org/10.1016/S0032-3861(00)00565-6

    Article  CAS  Google Scholar 

  49. Vogelsager N, Furlan SA, Schneider ALS et al (2004) Filmes de P (3HB ) e PCL : Acompanhamento da Biodegradação em Solo por Propriedades Térmicas e Morfológicas P (3HB ) and PCL films : biodegradation follow-up in soil by thermal and morphological properties. Matéria (Rio Janeiro) 9:370–377

    Google Scholar 

  50. De CA, Marconato JC, Franchetti SMM (2010) Biodegradação de filmes de PP/PCL em solo e solo com chorume. Polímeros 20:295–300. https://doi.org/10.1590/S0104-14282010005000039

    Article  Google Scholar 

  51. Garcia-Ivars J, Iborra-Clar M-I, Alcaina-Miranda M-I et al (2016) Surface photomodification of flat-sheet PES membranes with improved antifouling properties by varying UV irradiation time and additive solution pH. Chem Eng J 283:231–242. https://doi.org/10.1016/j.cej.2015.07.078

    Article  CAS  Google Scholar 

  52. Gonçalves SPC, De Campos A, Martins-Franchetti SM (2011) Influência da geometria e umidade de colunas de solo na biodegradação de filmes de PCL. Polimeros 21:107–110. https://doi.org/10.1590/S0104-14282011005000020

    Article  Google Scholar 

  53. Giacobazzi G, Rizzuto M, Zubitur M et al (2019) Crystallization kinetics as a sensitive tool to detect degradation in poly(lactide)/poly(ε-caprolactone)/ PCL-co-PC copolymers blends. Polym Degrad Stab 168:108939. https://doi.org/10.1016/j.polymdegradstab.2019.108939

    Article  CAS  Google Scholar 

  54. Luyt AS, Kelnar I (2019) Effect of blend ratio and nanofiller localization on the thermal degradation of graphite nanoplatelets-modified PLA/PCL. J Therm Anal Calorim 136:2373–2382. https://doi.org/10.1007/s10973-018-7870-y

    Article  CAS  Google Scholar 

  55. Vijay R, Vinod A, Kathiravan R et al (2020) Evaluation of Azadirachta indica seed/spent Camellia sinensis bio-filler based jute fabrics–epoxy composites: Experimental and numerical studies. J Ind Text 49:1252–1277. https://doi.org/10.1177/1528083718811086

    Article  Google Scholar 

  56. Vijay R, Singaravelu DL (2016) Experimental investigation on the mechanical properties of Cyperus pangorei fibers and jute fiber-based natural fiber composites. Int J Polym Anal Charact 21:617–627. https://doi.org/10.1080/1023666X.2016.1192354

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CNPq (National Council for Scientific and Technological Development, Brasilia/DF, Brazil) and CAPES (Coordination for the Improvement of Higher-Level Education, Brasilia/DF, Brazil) for the financial support.

Funding

This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the drafting the article or revising it critically content, approving the final version submitted for publication. EAS: Conceptualization, methodology, formal analysis, investigation. DD: Conceptualization, methodology, formal analysis, investigation. EMA: Supervision, project administration, funding acquisition. CBB: Conceptualization, Visualization. EPM: Resources, supervision.

Corresponding author

Correspondence to Edson Antônio dos Santos Filho.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Filho, E.A., Siqueira, D.D., Araújo, E.M. et al. The Impact of the Macaíba Components Addition on the Biodegradation Acceleration of Poly (Ɛ-Caprolactone) (PCL). J Polym Environ 30, 443–460 (2022). https://doi.org/10.1007/s10924-021-02215-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02215-1

Keywords

Navigation