Skip to main content
Log in

Evaluation of Biodegradability of Potato Peel Powder Based Polyolefin Biocomposites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Solid waste accumulation due to synthetic polymer and polymer composites used in packaging is causing a major threat to human and wildlife. Biodegradation of plastics and biocomposites in environment is a viable solution to this problem and yet a complex phenomenon due to diversity and efficiency of microbial communities involved in attacking the various biocomposite materials. The aim of the present work was to evaluate the biodegradability of biocomposites prepared from potato-peel powder together with polypropylene (POPL/PP) or linear low density polyethylene (POPL/LLDPE) plus maleic anhydride grafted polyolefin compatibilizers. To achieve this, biodegradability tests were conducted according to ASTM D 5338 on the specimen samples for 45 days. The specimens were also analysed post-biodegradation using scanning electron microscope (SEM), thermogravimetric analyser (TGA) and direct scanning calorimeter (DSC) techniques to study the changes in morphology and thermal properties. Biocomposites with 40% (w/w) POPL filler in PP without compatibilizer showed maximum degradation upto 10%, while the LLDPE composites showed biodegradation upto 1%. Addition of compatibilizers reduced the biodegradability in the composites. The results were well corroborated by percentage weight loss in the test biocomposite specimens. Biodegradation in the biocomposites was shown to be dependent on POPL content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Mohanty AK, Misra M, Drzal LT (2002) J Polym Environ 10:19–26

    Article  CAS  Google Scholar 

  2. Khalid M, Chuah LCA, Ratnam CT (2010) Malaysia Patent 2010004392

  3. Iwanczuk A, Kozlowski M, Lukaszewicz M, Jablonski S (2015) J Polym Environ 23:277–282

    Article  CAS  Google Scholar 

  4. Haris MY, Laila D, Zainudin ES, Musstappha F, Zahari R, Halim Z (2011) Key Eng Mater 471–472

  5. Ashori A (2008) Bioresour Technol 99:4661–4667

    Article  CAS  Google Scholar 

  6. Gurunathan T, Smita A, Nayak SK (2015) Composites Part A 77:1–25

    Article  CAS  Google Scholar 

  7. Bashim ASM, Manusamy Y (2015)Polym Plast Technol Eng 54:87–99

    Article  Google Scholar 

  8. Kolybaba M, Tabil LG, Panigrahi S, Crerar WJ, Powell T, Wang B (2003) Paper no. RRV03-0007, ASAE meeting presentation. The Society of Engineering in Agricultural, Food and Biological systems, St. Joseph

    Google Scholar 

  9. Tokiwa Y, Buenaventurada PC, Charles UU, Seiichi A (2009) Int J Mol Sci 10:3722–3742

    Article  CAS  Google Scholar 

  10. Nathalie L, Bienaime C, Christian B, Michele Q, Silvestre F, Jose ENS (2008) Chemosphere 73:429–442

    Article  Google Scholar 

  11. Arutchelvi J, Sudhakar M, Arkatkar A, Doble M, Bhaduri S, Uppara PV (2008) Indian J Biotechnol 7:9–22

    CAS  Google Scholar 

  12. Sen SK, Raut S (2015) J Environ Chem Eng 3:462–473

    Article  Google Scholar 

  13. Gajendiran A, Krishnamoorthy S, Abraham J (2016) 3 Biotech 6:1–6

    Article  Google Scholar 

  14. Mishra S, Talele NR (2002) Polym Plast Technol Eng (2002) 41:361–381

  15. Hojbota G, Mihal R, Nicoleta B (2000) Rev Chim 51:342–348

    CAS  Google Scholar 

  16. Pichaiyuti S, Winunthorn S, Thongpet C, Nakason C (2016) Iran Polym J 25:711–723

    Article  Google Scholar 

  17. Vidal R, Martinez P, Garrai D (2009) Int J Life Cycle Assess 14:73–82

    Article  CAS  Google Scholar 

  18. Bikiaris D, Panayiotou C (1998) J Appl Polym Sci 70:1503–1521

    Article  CAS  Google Scholar 

  19. Cacciari I, Quatrini P, Zirletta G, Mincione E, Vinciguerra V, Lupatelli P, Sermanni GG (1993) Appl Environ Microbiol 59:3695–3700

    CAS  Google Scholar 

  20. Wei L, Liang S, MacDonald AG (2015) Ind Crop Prod 69:91–103

    Article  CAS  Google Scholar 

  21. Sugumaran V, Vimal KK, Kapur GS, Narula AK (2015) J Appl Polym Sci 132:10356

    Article  Google Scholar 

  22. Durmus A, Kasgoz A, Macosko CW (2008) J Macromol Sci 47:608–619

    Article  CAS  Google Scholar 

  23. Sahin S, Yayla P (2005) Polym Testing 24:1012–1021

    Article  CAS  Google Scholar 

  24. Quinn FA, Mandelkern L (1958) J Am Chem Soc 80:3178–3182

    Article  CAS  Google Scholar 

  25. Tsuji H, Miyauchi S (2001) Polym Degrad Stab 71:415–424

    Article  CAS  Google Scholar 

  26. Zuchoswka D, Hlavata D, Steller R, Adamiak W, Meissner W (1999) Polym Degrad Stab 64:339–347

    Article  Google Scholar 

  27. Vasile C, Seymour RB (eds) (2009) Degradation and decomposition, In: Handbook of polyolefins synthesis and properties. Marcel Dekker Inc, New York

  28. Chattopadhyay SK, Singh S, Pramanik N, Niyogi UK, Khandal RK, Uppaluri R, Ghoshal AK (2011)J Appl Polym Sci 121:2226–2232

    Article  CAS  Google Scholar 

  29. Ipekoglu B, Boke H, Cizer O (2007) Build Environ 42:970–978

    Article  Google Scholar 

  30. Jakubowicz I, Yarahmadi N, Petersen H (2006) Polym Degrad Stab 91:1556–1562

    Article  CAS  Google Scholar 

  31. Sahari J, Salit MS, Zainudin ES, Maleque MA (2014) Fibres Text East Eur 22:96–98

    Google Scholar 

  32. Thakore IM, Desai S, Sarawade BD, Devi S (2001) Eur Polym J37:151–160

    Article  Google Scholar 

  33. Sam ST, Ismail H, Ahmad Z (2011) Polym Plast Technol Eng 50:851–861

    Article  CAS  Google Scholar 

  34. Parparita E, Nistor MT, Popescu M-C, Vasile C (2014) Polym Degrad Stab 109:13–20

    Article  CAS  Google Scholar 

  35. Monika A, Jerzy J (2009) Food Sci Technol 42:1219–1224

    Google Scholar 

  36. Roy SB, Shit SC, Sengupta RA, Shukla PR (2015) Int J Innov Res Sci Eng Technol 4:1120–1130

    Google Scholar 

  37. Luckachan GE, Pillai CKS (2011) J Polym Environ 19:637–667

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anudeep K. Narula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugumaran, V., Bhunia, H. & Narula, A.K. Evaluation of Biodegradability of Potato Peel Powder Based Polyolefin Biocomposites. J Polym Environ 26, 2049–2060 (2018). https://doi.org/10.1007/s10924-017-1103-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1103-5

Keywords

Navigation