Skip to main content
Log in

Sustainable Water Purification and Energy Generation Over Crystalline Chitosan Grafted Polyaniline Composite

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The present research demonstrates the design and development of a dual-compartment water purification proto-plant for microbial degradation of organic waste using microbial fuel cell technology and adsorptive removal of inorganic pollutants present in sewage water using highly crystalline chitosan grafted polyaniline (CHIT-g-PANI) and rice husk derived adsorbent. The materials were characterized by UV–Vis, infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and relevant standard methods. The observed results revealed the highly crystalline, biocompatible, porous nature of CHIT-g-PANI as electrode materials for effective microbial degradation of organic wastes of sewage water for generating electricity and water purification. Thus, observed parameters were power density of 6.496 w/m2, sustainable usability for 20 days, and removal of organic waste by 97% from sewage water. Furthermore, the above partially treated water was passed through an adsorption chamber filled with rice husk-derived adsorbents, which removes the 84.5% inorganic impurities of its original concentrations.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Xu L, Zhao Y, Doherty L et al (2016) The integrated processes for wastewater purification based on the principle of microbial fuel cells: a review. Crit Rev Env Sci Tec 46:60–91. https://doi.org/10.1080/10643389.2015.1061884

    Article  CAS  Google Scholar 

  2. Barnham K, Knorr K, Mazzer M (2016) Recent progress towards all-renewable electricity supplies. Nat Mater 15:115–116. https://doi.org/10.1038/nmat4485

    Article  CAS  PubMed  Google Scholar 

  3. Logan BE (2004) Extracting hydrogen and electricity from renewable resources. Environ Sci Technol 38:160A-167A

    Article  CAS  Google Scholar 

  4. Janicek A, Fan Y, Liu H (2014) Design of microbial fuel cells for practical application: a review and analysis of scale-up studies. Biofuels 5:79–92. https://doi.org/10.4155/bfs.13.69

    Article  CAS  Google Scholar 

  5. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192. https://doi.org/10.1021/es0605016

    Article  CAS  PubMed  Google Scholar 

  6. Jabeen G, Farooq R (2017) Microbial fuel cells and their applications for cost-effective water pollution remediation. Proc Natl Acad Sci India Sect B Biol Sci 87:625–635. https://doi.org/10.1007/s40011-015-0683-x

    Article  CAS  Google Scholar 

  7. Hasany M, Mardanpour MM, Yaghmaei S (2016) Biocatalysts in microbial electrolysis cells: a review. Int J Hydrog Energy 41:1477–1493. https://doi.org/10.1016/j.ijhydene.2015.10.097

    Article  CAS  Google Scholar 

  8. Wang H, Do PJ, Ren ZJ (2015) Practical energy harvesting for microbial fuel cells: a review. Environ Sci Technol 49:3267–3277. https://doi.org/10.1021/es5047765

    Article  CAS  PubMed  Google Scholar 

  9. Dutta K, Kundu PP (2014) A review on aromatic conducting polymers-based catalyst supporting matrices for application in microbial fuel cells. Polym Rev 54:401–435. https://doi.org/10.1080/15583724.2014.881372

    Article  CAS  Google Scholar 

  10. O’Callaghan K (2016) Technologies for the utilisation of biogenic waste in the bioeconomy. Food Chem 198:2–11. https://doi.org/10.1016/j.foodchem.2015.11.030

    Article  CAS  PubMed  Google Scholar 

  11. Wei J, Liang P, Huang X (2011) Recent progress in electrodes for microbial fuel cells. Bioresour Technol 102:9335–9344. https://doi.org/10.1016/j.biortech.2011.07.019

    Article  CAS  PubMed  Google Scholar 

  12. Kaur R, Marwaha A, Chhabra VA et al (2020) Recent developments on functional nanomaterial-based electrodes for microbial fuel cells. Renew Sustain Energy Rev 119:109551. https://doi.org/10.1016/j.rser.2019.109551

    Article  CAS  Google Scholar 

  13. Thepsuparungsikul N, Ng TC, Lefebvre O, Ng HY (2014) Different types of carbon nanotube-based anodes to improve microbial fuel cell performance. Water Sci Technol 69:1900–1910. https://doi.org/10.2166/wst.2014.102

    Article  CAS  PubMed  Google Scholar 

  14. Hou J, Liu Z, Zhang P (2013) A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes. J Power Sources 224:139–144. https://doi.org/10.1016/j.jpowsour.2012.09.091

    Article  CAS  Google Scholar 

  15. Heijne A, Hamelers HVM, Saakes M, Buisman CJN (2008) Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochim Acta 53:5697–5703. https://doi.org/10.1016/j.electacta.2008.03.032

    Article  CAS  Google Scholar 

  16. Hou J, Liu Z, Yang S, Zhou Y (2014) Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells. J Power Sources 258:204–209. https://doi.org/10.1016/j.jpowsour.2014.02.035

    Article  CAS  Google Scholar 

  17. Kumar G, Kirubaharan CJ, Udhayakumar S et al (2014) Synthesis, structural, and morphological characterizations of reduced graphene oxide-supported polypyrrole anode catalysts for improved microbial fuel cell performances. ACS Sustain Chem Eng 2:2283–2290. https://doi.org/10.1021/sc500244f

    Article  CAS  Google Scholar 

  18. Shukla SK, Deshpande SR, Shukla SK, Tiwari A (2012) Fabrication of a tunable glucose biosensor based on zinc oxide/chitosan-graft-poly(vinyl alcohol) core-shell nanocomposite. Talanta 99:283–287. https://doi.org/10.1016/j.talanta.2012.05.052

    Article  CAS  PubMed  Google Scholar 

  19. Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332:443–447. https://doi.org/10.1126/science.1200832

    Article  CAS  PubMed  Google Scholar 

  20. Ghasemi M, Daud WRW, Mokhtarian N et al (2013) The effect of nitric acid, ethylenediamine, and diethanolamine modified polyaniline nanoparticles anode electrode in a microbial fuel cell. Int J Hydrog Energy 38:9525–9532. https://doi.org/10.1016/j.ijhydene.2012.12.016

    Article  CAS  Google Scholar 

  21. Lai B, Tang X, Li H et al (2011) Power production enhancement with a polyaniline modified anode in microbial fuel cells. Biosens Bioelectron 28:373–377. https://doi.org/10.1016/j.bios.2011.07.050

    Article  CAS  PubMed  Google Scholar 

  22. Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58. https://doi.org/10.1016/j.ijbiomac.2013.04.043

    Article  CAS  PubMed  Google Scholar 

  23. Shukla SK, Tiwari A (2011) Synthesis of chemical responsive chitosan-grafted-polyaniline bio-composite. Adv Mater Res 306–307:82–86

    Article  Google Scholar 

  24. Kushwaha CS, Shukla SK (2019) Non-enzymatic potentiometric malathion sensing over chitosan-grafted polyaniline hybrid electrode. J Mater Sci 54:10846–10855. https://doi.org/10.1007/s10853-019-03625-2

    Article  CAS  Google Scholar 

  25. Kushwaha CS, Shukla SK (2020) Electrochemical sensing of paracetamol using iron oxide encapsulated in chitosan-grafted-polyaniline. ACS Appl Polym Mater 2:2252–2259. https://doi.org/10.1021/acsapm.0c00239

    Article  CAS  Google Scholar 

  26. Xu H, Wang L, Wen Q et al (2019) A 3D porous NCNT sponge anode modified with chitosan and Polyaniline for high-performance microbial fuel cell. Bioelectrochem 129:144–153. https://doi.org/10.1016/j.bioelechem.2019.05.008

    Article  CAS  Google Scholar 

  27. Xu H, Wang L, Lin C et al (2020) Improved simultaneous decolorization and power generation in a microbial fuel cell with the sponge anode modified by polyaniline and chitosan. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-020-03346-2

    Article  PubMed  PubMed Central  Google Scholar 

  28. Haque S, Nasar A, Inamuddin RMM (2020) Applications of chitosan (CHI)-reduced graphene oxide (rGO)-polyaniline (PAni) conducting composite electrode for energy generation in glucose biofuel cell. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-67253-6

    Article  CAS  Google Scholar 

  29. Tiwari A, Shukla SK (2009) Chitosan-g-polyaniline: a creatine amidinohydrolase immobilization matrix for creatine biosensor. Express Polym Lett 3:553–559. https://doi.org/10.3144/expresspolymlett.2009.69

    Article  CAS  Google Scholar 

  30. Varghese JG, Kittur AA, Rachipudi PS, Kariduraganavar MY (2010) Synthesis, characterization and pervaporation performance of chitosan-g-polyaniline membranes for the dehydration of isopropanol. J Membr Sci 364:111–121. https://doi.org/10.1016/j.memsci.2010.08.007

    Article  CAS  Google Scholar 

  31. Karthik R, Meenakshi S (2014) Facile synthesis of cross linked-chitosan-grafted-polyaniline composite and its Cr(VI) uptake studies. Int J Biol Macromol 67:210–219. https://doi.org/10.1016/j.ijbiomac.2014.03.035

    Article  CAS  PubMed  Google Scholar 

  32. Razavi N, Sarafraz Yazdi A (2017) New application of chitosan-grafted polyaniline in dispersive solid-phase extraction for the separation and determination of phthalate esters in milk using high-performance liquid chromatography. J Sep Sci 40:1739–1746. https://doi.org/10.1002/jssc.201601059

    Article  CAS  PubMed  Google Scholar 

  33. Lee S, Choi D, Son Y (2019) Hazardous acid detection based on chitosan-grafted-polyaniline copolymer. Polym Eng Sci 59:E105–E110. https://doi.org/10.1002/pen.24994

    Article  CAS  Google Scholar 

  34. Karthik R, Meenakshi S (2015) Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan. Chem Eng J 263:168–177. https://doi.org/10.1016/j.cej.2014.11.015

    Article  CAS  Google Scholar 

  35. Do MH, Ngo HH, Guo W et al (2020) Microbial fuel cell-based biosensor for online monitoring wastewater quality: a critical review. Sci Total Environ 712:135612. https://doi.org/10.1016/j.scitotenv.2019.135612

    Article  CAS  PubMed  Google Scholar 

  36. Lee SY, Lim HS, Lee NE, Cho SO (2019) Biocompatible UV-absorbing polymer nanoparticles prepared by electron irradiation for application in sunscreen. RSC Adv 10:356–361. https://doi.org/10.1039/c9ra09752j

    Article  CAS  Google Scholar 

  37. Shukla SK, Kushwaha CS, Shukla A, Dubey GC (2018) Integrated approach for efficient humidity sensing over zinc oxide and polypyrole composite. Mater Sci Eng C 90:325–332. https://doi.org/10.1016/j.msec.2018.04.054

    Article  CAS  Google Scholar 

  38. Bernard M, Jubeli E, Pungente MD, Yagoubi N (2018) Biocompatibility of polymer-based biomaterials and medical devices-regulations: in vitro screening and risk-management. Biomater Sci 6:2025–2053

    Article  CAS  Google Scholar 

  39. Logan BE (2007) Microbial fuel cells power generation. Wiley, Hoboken, NJ, pp 44–60

    Book  Google Scholar 

  40. Devasahayam M, Masih SA (2012) Microbial fuel cells demonstrate high coulombic efficiency applicable for water remediation. Indian J Exp Biol 50:430–438

    CAS  PubMed  Google Scholar 

  41. Shukla SK, Nidhi S et al (2014) Metal decontamination from chemically modified rice husk film. Adv Mater Lett 5:352–355. https://doi.org/10.5185/amlett.2014.1018

    Article  CAS  Google Scholar 

  42. Ogbuefi PS, Nwaokafor P, Njoku IJ, Uzuegbunam OJ (2020) Elemental characterization of rice husk ash from local rice species in South Eastern Nigeria. Chem Africa 3:1081–1085. https://doi.org/10.1007/s42250-020-00188-7

    Article  CAS  Google Scholar 

  43. Shukla SK, Bharadvaja A, Dubey GC (2019) Micro-cellulose sheet and polyvinyl alcohol blended film for active packaging. Chem. Afr 2(4):723–732. https://doi.org/10.1007/s42250-019-00088-5

    Article  CAS  Google Scholar 

  44. Shukla SK, Bharadvaja A, Tiwari A et al (2010) Synthesis and characterization of highly crystalline polyaniline film promising for humid sensor. Adv Mater Lett 1:129–134. https://doi.org/10.5185/amlett.2010.3105

    Article  CAS  Google Scholar 

  45. Shukla SK (2013) Synthesis and characterization of polypyrrole grafted cellulose for humidity sensing. Int J Biol Macromol 62:531–536. https://doi.org/10.1016/j.ijbiomac.2013.10.014

    Article  CAS  PubMed  Google Scholar 

  46. Shukla SK (2012) Synthesis of polyaniline grafted cellulose suitable for humidity sensing. Indian J Eng Mater Sci 19:417–420

    CAS  Google Scholar 

  47. Trchová M, Stejskal J (2011) Polyaniline: the infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical report). Pure Appl Chem 83:1803–1817. https://doi.org/10.1351/PAC-REP-10-02-01

    Article  CAS  Google Scholar 

  48. Queiroz MF, Melo KRT, Sabry DA et al (2015) Does the use of chitosan contribute to oxalate kidney stone formation? Mar Drugs 13:141–158. https://doi.org/10.3390/md13010141

    Article  CAS  Google Scholar 

  49. Gao J, Huang J, Huang Z et al (2018) Catalytic growth of highly crystalline polyaniline by copper under ambient conditions. CrystEngComm 20:5119–5122. https://doi.org/10.1039/C8CE00893K

    Article  CAS  Google Scholar 

  50. Zhang Z, Deng J, Wan M (2009) Highly crystalline and thin polyaniline nanofibers oxidized by ferric chloride. Mater Chem Phys 115:275–279. https://doi.org/10.1016/j.matchemphys.2008.12.005

    Article  CAS  Google Scholar 

  51. Xiong L, Xiao H, Chen S et al (2014) Fast and simplified synthesis of cuprous oxide nanoparticles: Annealing studies and photocatalytic activity. RSC Adv 4:62115–62122. https://doi.org/10.1039/c4ra12406e

    Article  CAS  Google Scholar 

  52. Chouler J, Padgett GA, Cameron PJ et al (2016) Towards effective small scale microbial fuel cells for energy generation from urine. Electrochim Acta 192:89–98. https://doi.org/10.1016/j.electacta.2016.01.112

    Article  CAS  Google Scholar 

  53. Qiao Y, Li CM, Bao SJ, Bao QL (2007) Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J Power Sources 170:79–84. https://doi.org/10.1016/j.jpowsour.2007.03.048

    Article  CAS  Google Scholar 

  54. Shoji E, Freund MS (2001) Potentiometric sensors based on the inductive effect on the pKa of poly(aniline): a nonenzymatic glucose sensor. J Am Chem Soc 123:3383–3384. https://doi.org/10.1021/ja005906j

    Article  CAS  PubMed  Google Scholar 

  55. Mahdi MM, Nasr EM, Behzad T, Sedaqatvand R (2012) Single chamber microbial fuel cell with spiral anode for dairy wastewater treatment. Biosens Bioelectron 38:264–269. https://doi.org/10.1016/j.bios.2012.05.046

    Article  CAS  Google Scholar 

  56. Das I, Das S, Sharma S, Ghangrekar MM (2020) Ameliorated performance of a microbial fuel cell operated with an alkali pre-treated clayware ceramic membrane. Int J Hydrog Energy 45:16787–16798. https://doi.org/10.1016/j.ijhydene.2020.04.157

    Article  CAS  Google Scholar 

  57. Das I, Das S, Dixit R, Ghangrekar MM (2020) Goethite supplemented natural clay ceramic as an alternative proton exchange membrane and its application in microbial fuel cell. Ionics 26:3061–3072. https://doi.org/10.1007/s11581-020-03472-1

    Article  CAS  Google Scholar 

  58. Wang Y, Pan X, Chen Y et al (2020) A 3D porous nitrogen-doped carbon nanotube sponge anode modified with polypyrrole and carboxymethyl cellulose for high-performance microbial fuel cells. J Appl Electrochem 50:1281–1290. https://doi.org/10.1007/s10800-020-01488-z

    Article  CAS  Google Scholar 

  59. Zhao X, Tian T, Guo M et al (2020) Cauliflower-like polypyrrole@MnO2 modified carbon cloth as a capacitive anode for high-performance microbial fuel cells. J Chem Technol Biotechnol 95:163–172. https://doi.org/10.1002/jctb.6218

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are thankful to the Principal, Bhaskaracharya College of Applied Sciences, University of Delhi, for permission to use their laboratory and Prof. R. C. Sharma, Department of Applied Chemistry and Polymer Technology, Delhi Technological University, for the technical discussions and suggestions. One of us CSK is thankful to the council of scientific and industrial research, India [No. 08/ 642(0002)/2016-EMR-I], for granting fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saroj Kr. Shukla.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwaha, C.S., Shukla, S.K., Govender, P.P. et al. Sustainable Water Purification and Energy Generation Over Crystalline Chitosan Grafted Polyaniline Composite. J Polym Environ 29, 3744–3755 (2021). https://doi.org/10.1007/s10924-021-02129-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02129-y

Keywords

Navigation