Skip to main content
Log in

Epoxy/Polyethylene Glycol/TiO2: Design, Fabrication and Investigation of Mechanical Properties, Thermal Cycling Fatigue and Antibacterial Activity

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, the reinforcing effects of polyethylene glycol (PEG) and TiO2 nanoparticles on the mechanical properties of epoxy were investigated. The relationship between independent variables and mechanical properties were optimized by using responsive surface methodology (RSM) combined with central composite design (CCD) models. According to the results obtained from the CCD compared to neat epoxy, elongation and tensile strength of optimal sample were increased by 70.25% and 65.96%, respectively. The mechanical properties of nanocomposites were studied after exposure to the thermal cycling application (0 to 80 °C for 150 times). The results of thermal cycling tests depicted that the nanocomposites have a good mechanical stability under tاermal cycling tests. The epoxy/PEG/TiO2 nanocomposites were characterized using thermal gravimetric analysis (TGA), x-ray diffraction (XRD) and cross-section SEM images. TGA analysis was exposed that TiO2 nanoparticles could be enhanced the thermal property of the epoxy. Also, Ag–TiO2 nanostructures were synthesized by photo-deposition method and epoxy/PEG/(Ag–TiO2) were designed for enhanced antibacterial activity of nanocomposite against E. coli. The SEM images and XRD analyses were displayed the TiO2 and Ag–TiO2 nanoparticles were purely synthesized. On the other hand, the EDS mapping analysis of Ag–TiO2 nanoparticles confirmed that the Ag, Ti and oxygen were homogeneously distributed in samples.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Njuguna J, Pielichowski K (2004) Adv Eng Mater 6(4):193–203

    Article  CAS  Google Scholar 

  2. Rathod VT, Kumar JS, Jain A (2017) Appl Nanosci 7(8):519–548

    Article  CAS  Google Scholar 

  3. Srivastava R, Srivastava D (2015) J Polym Environ 23(3):283–293

    Article  CAS  Google Scholar 

  4. Njuguna J, Pielichowski K, Fan J (2012) In: Polymer nanocomposites for aerospace applications. In Advances in polymer nanocomposites, Elsevier, Woodhead Publishing, pp 472–539

  5. Sousa JM, Correia JR, Cabral-Fonseca S, Diogo AC (2014) Compos Struct 116:720–731

    Article  Google Scholar 

  6. Hancox N (1998) Mater Des 19(3):85–91

    Article  CAS  Google Scholar 

  7. Islam MR, Parimalam M, Sumdani MG, Taher MA, Asyadi F, Yenn TW (2020) Polym Test 81:

    Article  CAS  Google Scholar 

  8. Parimalam M, Islam MR, Yunus RM (2018) Polym Test 70:197–207

    Article  CAS  Google Scholar 

  9. Li J, Zhang G, Zhang H, Fan X, Zhou L, Shang Z, Shi X (2018) Appl Surf Sci 428:7–16

    Article  CAS  Google Scholar 

  10. Venkateshwaran N, ElayaPerumal A, Raj RA (2012) J Polym Environ 20(2):565–572

    Article  CAS  Google Scholar 

  11. Aradhana R, Mohanty S, Nayak SK (2018) Polymer 141:109–123

    Article  CAS  Google Scholar 

  12. Bose S, Das A, Basu S, Drzal LT (2018) Polym Compos 39(9):3119–3128

    Article  CAS  Google Scholar 

  13. Wang W, Kan Y, Yu B, Pan Y, Liew K, Song L, Hu Y (2017) Compos Part A-Appl Sci Manuf 95:173–182

    Article  CAS  Google Scholar 

  14. Kumar A, Ghosh P, Yadav K, Kumar K (2017) Compos Part B Eng 113:291–299

    Article  CAS  Google Scholar 

  15. Hashemi SA, Mousavi SM, Arjmand M, Yan N, Sundararaj U (2018) Polym Compos 39(S2):E1139–E1148

    Article  CAS  Google Scholar 

  16. Sumdani MG, Islam MR, Yahaya ANA (2018) J Appl Polym Sci 135(48):46883

    Article  CAS  Google Scholar 

  17. Zabihi O, Ahmadi M, Nikafshar S, Preyeswary KC, Naebe M (2018) Compos Part B Eng 135:1–24

    Article  CAS  Google Scholar 

  18. Miyagawa H, Misra M, Drzal LT, Mohanty AK (2005) J Polym Environ 13(2):87–96

    Article  CAS  Google Scholar 

  19. Parimalam M, Islam MR, Yunus RM (2019) Polym Polym Compos 27(2):82–91

    CAS  Google Scholar 

  20. Vu PG, Truc TA, Chinh NT, Tham DQ, Trung TH, Oanh VK, Olivier M, Hoang T (2018) J Nanosci Nanotechnol 18(4):2830–2837

    Article  CAS  PubMed  Google Scholar 

  21. Jouyandeh M, Shabanian M, Khaleghi M, Paran SMR, Ghiyasi S, Vahabi H, Formela K, Puglia D, Saeb MR (2018) Prog Org Coat 125:384–392

    Article  CAS  Google Scholar 

  22. Cao Y, Sun J, Yu D (2002) J Appl Polym Sci 83:70–77

    Article  CAS  Google Scholar 

  23. Azman NAN, Islam MR, Parimalam M, Rashidi NM, Mupit M (2020) Polym Bull 77(2):805–821

    Article  CAS  Google Scholar 

  24. Safarpour M, Vatanpour V, Khataee A (2016) Desalination 393:65–78

    Article  CAS  Google Scholar 

  25. Goyat M, Ghosh P (2018) Ultrason Sonochem 42:141–154

    Article  CAS  PubMed  Google Scholar 

  26. Goyat M, Rana S, Halder S, Ghosh P (2018) Ultrason Sonochem 40:861–873

    Article  CAS  PubMed  Google Scholar 

  27. Kumar K, Ghosh P, Kumar A (2016) Compos Part B Eng 97:353–360

    Article  CAS  Google Scholar 

  28. Keleher J, Bashant J, Heldt N, Johnson L, Li Y (2002) World J Microbiol Biotechnol 18:133–139

    Article  CAS  Google Scholar 

  29. Li Y, Tian J, Yang C, Hsiao BS (2018) Polymers 10:1052

    Article  PubMed Central  CAS  Google Scholar 

  30. Mallakpour S, Hatami M (2018) Polymer 154:188–199

    Article  CAS  Google Scholar 

  31. Mori Y, Shirokawa M, Sasaki S (2018) Biocontrol Sci 23:129–132

    Article  CAS  PubMed  Google Scholar 

  32. Chieng BW, Ibrahim NA, Yunus WMZW, Hussein MZ (2013) Polymers 6:93–104

    Article  CAS  Google Scholar 

  33. Zhang C, Salick MR, Cordie TM, Ellingham T, Dan Y, Turng L-S (2015) Mater Sci Eng, C 49:463–471

    Article  CAS  Google Scholar 

  34. Hamadanian M, Reisi-Vanani A, Behpour M, Esmaeily A (2011) Desalination 281:319–324

    Article  CAS  Google Scholar 

  35. Mirmasoomi SR, Ghazi MM, Galedari M (2017) Sep Purif Technol 175:418–427

    Article  CAS  Google Scholar 

  36. Abbasi A, Khojasteh H, Hamadanian M, Salavati-Niasari M (2018) Sep Purif Technol 195:37–49

    Article  CAS  Google Scholar 

  37. Dean A, Voss D, Draguljić D (2017) Response surface methodology. Springer, Cham, pp 565–614

    Google Scholar 

  38. Asfaram A, Ghaedi M, Dashtian K, Ghezelbash GR (2018) ACS Sustain Chem Eng 6:4549–4563

    Article  CAS  Google Scholar 

  39. Kumari A, Gaur A, Wasewar KL, Kumar S (2018) Ind Eng Chem Res 57:12485–12493

    Article  CAS  Google Scholar 

  40. Diwan B, Parkhey P, Gupta P (2018) ACS Sustain Chem Eng 6:1225–1234

    Article  CAS  Google Scholar 

  41. Yao L, Wang X, Liu H, Lin C, Pang L, Yang J, Zeng Q (2017) J Ind Eng Chem 56:321–326

    Article  CAS  Google Scholar 

  42. Ghasemi A, Moradi M (2017) Polym Test 59:20–28

    Article  CAS  Google Scholar 

  43. Gantayat S, Sarkar N, Prusty G, Rout D, Swain SK (2018) Adv Polym Technol 37(1):176–184

    Article  CAS  Google Scholar 

  44. Ashrafi M, Hamadanian M, Ghasemi AR, Kashi FJ (2019) Polym Compos 40:3393–3401

    Article  CAS  Google Scholar 

  45. Pender K, Yang L (2017) Compos Part A Appl Sci Manuf 100:285–293

    Article  CAS  Google Scholar 

  46. Qu T, Yang N, Hou J, Li G, Yao Y, Zhang Q, He L, Wu D, Qu X (2017) RSC Adv 7:6140–6151

    Article  CAS  Google Scholar 

  47. Zulsyafiq M, Islam MR, Sumdani MG, Firouzi A (2020) Polym Test 89:

    Article  CAS  Google Scholar 

  48. Dhoke SK, Bhandari R, Khanna A (2009) Prog Org Coat 64(1):39–46

    Article  CAS  Google Scholar 

  49. Newcomb BA, Giannuzzi LA, Lyons KM, Gulgunje PV, Gupta K, Liu Y, Kamath M, McDonald K, Moon J, Feng B, Peterson GP (2015) Carbon 93:502–514

    Article  CAS  Google Scholar 

  50. Unnithan AR, Nejad AG, Sasikala ARK, Thomas RG, Jeong YY, Murugesan P, Nasseri S, Wu D, Park CH, Kim CS (2016) Chem Eng J 287:640–648

    Article  CAS  Google Scholar 

  51. Hadisi Z, Nourmohammadi J, Nassiri SM (2018) Int J Biol Macromol 107:2008–2019

    Article  CAS  PubMed  Google Scholar 

  52. Taka AL, Pillay K, Mbianda XY (2017) Carbohydr Polym 159:94–107

    Article  CAS  Google Scholar 

  53. Almatroudi A (2020) Open Life Sci 15(1):819–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masood Hamadanian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashrafi, M., Hamadanian, M. & Ghasemi, A.R. Epoxy/Polyethylene Glycol/TiO2: Design, Fabrication and Investigation of Mechanical Properties, Thermal Cycling Fatigue and Antibacterial Activity. J Polym Environ 29, 3867–3877 (2021). https://doi.org/10.1007/s10924-021-02115-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02115-4

Keywords

Navigation