Skip to main content
Log in

A Comparison of the Effect of Silk Fibroin Nanoparticles and Microfibers on the Reprocessing and Biodegradability of PLA/PCL Blends

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this research, the effect of reprocessing on the properties of poly(lactic acid)/poly(ε-caprolactone) (PLA/PCL) blends reinforced with silk nanoparticles (NP) and silk microfibers (SF) was investigated. In this regard, the multiple extrusion process was applied to the PLA/PCL based composites and their morphology, thermal stability, intrinsic viscosity, water absorption, mass loss, barrier, and mechanical properties were studied and compared. The results of atomic force microscopy showed that silk nanoparticles were mainly located in the PLA matrix and partially at the phase interphase with a thickness of layers around 80 nm. The scanning electron microscopy results illustrated a good dispersion of NPs in the blend and poor adhesion between SFs and the polymer matrix. The thermogravimetric analysis results showed that the presence of bio-fillers stabilized the thermal properties of composites and decreased the thermo-mechanical degradation of recycled materials. Furthermore, the addition of NPs and SFs improved the barrier properties of materials and led to a decrease in the value of water absorption and mass loss of PCL/PCL composites. The results of microhardness and impact tests also demonstrated that the mechanical properties of neat PLA/PCL blends are deteriorated by increasing the number of reprocessing cycles; however, the incorporation of both NPs and SFs improved the mechanical performance of recycled PLA/PCL composites. The results suggest that the use of silk fillers represents a cost-effective and environmentally friendly way of improving the properties of reprocessed PLA-based plastic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Diaz CA, Pao HY, Kim S (2016) Film performance of poly (lactic acid) blends for packaging applications. J Appl Packag Res 8:4

    Google Scholar 

  2. Siracusa V, Rocculi P, Romani S, Dalla Rosa M (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643

    CAS  Google Scholar 

  3. Liu H, Chen N, Shan P et al (2019) Toward fully bio-based and supertough PLA blends via in situ formation of cross-linked biopolyamide continuity network. Macromolecules 52:8415–8429

    CAS  Google Scholar 

  4. Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116:2602–2663

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Navarro-Baena I, Sessini V, Dominici F et al (2016) Design of biodegradable blends based on PLA and PCL: from morphological, thermal and mechanical studies to shape memory behavior. Polym Degrad Stab 132:97–108

    CAS  Google Scholar 

  6. Kelnar I, Kratochvil J, Kaprálková L et al (2017) Graphite nanoplatelets-modified PLA/PCL: effect of blend ratio and nanofiller localization on structure and properties. J Mech Behav Biomed Mater 71:271–278

    CAS  PubMed  Google Scholar 

  7. Guarino V, Gentile G, Sorrentino L, Ambrosio L (2002) Polycaprolactone: synthesis, properties, and applications. Encycl Polym Sci Technol 17:1–36

    Google Scholar 

  8. Wu J, Chu C-C (2012) Block copolymer of poly (ester amide) and polyesters: synthesis, characterization, and in vitro cellular response. Acta Biomater 8:4314–4323

    CAS  PubMed  Google Scholar 

  9. Wu D, Zhang Y, Zhang M, Yu W (2009) Selective localization of multiwalled carbon nanotubes in poly ($\varepsilon$-caprolactone)/polylactide blend. Biomacromol 10:417–424

    CAS  Google Scholar 

  10. Bouakaz BS, Habi A, Grohens Y, Pillin I (2017) Organomontmorillonite/graphene-PLA/PCL nanofilled blends: New strategy to enhance the functional properties of PLA/PCL blend. Appl Clay Sci 139:81–91

    CAS  Google Scholar 

  11. Wachirahuttapong S, Thongpin C, Sombatsompop N (2016) Effect of PCL and compatibility contents on the morphology, crystallization and mechanical properties of PLA/PCL blends. Energy Procedia 89:198–206

    CAS  Google Scholar 

  12. Shin BY et al (2017) Viscoelastic properties of PLA/PCL blends compatibilized with different methods. Korea-Australia Rheol J 29:295–302

    Google Scholar 

  13. Aversa C, Barletta M, Gisario A et al (2018) Improvements in mechanical strength and thermal stability of injection and compression molded components based on poly lactic acids. Adv Polym Technol 37:2158–2170

    CAS  Google Scholar 

  14. Mohanty AK, Misra M, Hinrichsen GI (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276:1–24

    Google Scholar 

  15. Beltrán FR, de la Orden MU, Lorenzo V et al (2016) Water-induced structural changes in poly (lactic acid) and PLLA-clay nanocomposites. Polymer (Guildf) 107:211–222

    Google Scholar 

  16. Żenkiewicz M, Richert J, Rytlewski P et al (2009) Characterisation of multi-extruded poly (lactic acid). Polym Test 28:412–418

    Google Scholar 

  17. Badia JD, Strömberg E, Karlsson S, Ribes-Greus A (2012) Material valorisation of amorphous polylactide. influence of thermo-mechanical degradation on the morphology, segmental dynamics, thermal and mechanical performance. Polym Degrad Stab 97:670–678

    CAS  Google Scholar 

  18. Soroudi A, Jakubowicz I (2013) Recycling of bioplastics, their blends and biocomposites: a review. Eur Polym J 49:2839–2858

    CAS  Google Scholar 

  19. Beltrán FR, Gaspar G, Chomachayi MD et al (2020) Influence of addition of organic fillers on the properties of mechanically recycled PLA. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-08025-7

    Article  Google Scholar 

  20. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364

    CAS  Google Scholar 

  21. Tesfaye M, Patwa R, Kommadath R et al (2016) Silk nanocrystals stabilized melt extruded poly (lactic acid) nanocomposite films: Effect of recycling on thermal degradation kinetics and optimization studies. Thermochim Acta 643:41–52

    CAS  Google Scholar 

  22. Dhar P, Tarafder D, Kumar A, Katiyar V (2016) Thermally recyclable polylactic acid/cellulose nanocrystal films through reactive extrusion process. Polymer (Guildf) 87:268–282

    CAS  Google Scholar 

  23. Magoshi J, Magoshi Y, Nakamura S (1981) Physical properties and structure of silk. VII. Crystallization of amorphous silk fibroin induced by immersion in methanol. J Polym Sci Polym Phys Ed 19:185–186

    CAS  Google Scholar 

  24. Dadras Chomachayi M, Solouk A, Akbari S et al (2017) Electrospun nanofibers comprising of silk fibroin/gelatin for drug delivery applications: thyme essential oil and doxycycline monohydrate release study. J Biomed Mater Res Part A 106:1092–1103

    Google Scholar 

  25. Chomachayi MD, Solouk A, Mirzadeh H (2016) Electrospun silk-based nanofibrous scaffolds: fiber diameter and oxygen transfer. Prog Biomater 5:71–80

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chomachayi MD, Solouk A, Mirzadeh H (2019a) Improvement of the electrospinnability of silk fibroin solution by atmospheric pressure plasma treatment. Fibers Polym 20:1594–1600

    Google Scholar 

  27. Balali S, Davachi SM, Sahraeian R et al (2018) Preparation and characterization of composite blends based on polylactic acid/polycaprolactone and silk. Biomacromol 19:4358–4369

    CAS  Google Scholar 

  28. Tesfaye M, Patwa R, Gupta A et al (2017) Recycling of poly (lactic acid)/silk based bionanocomposites films and its influence on thermal stability, crystallization kinetics, solution and melt rheology. Int J Biol Macromol 101:580–594

    CAS  PubMed  Google Scholar 

  29. Chomachayi MD, Jalali-arani A, Beltrán FR et al (2020) Biodegradable nanocomposites developed from PLA/PCL blends and silk fibroin nanoparticles: study on the microstructure, thermal behavior, crystallinity and performance. J Polym Environ 205:1–13

    Google Scholar 

  30. Chomachayi MD, Solouk A, Mirzadeh H (2019b) Mathematical modeling of electrospinning process of silk fibroin/gelatin nanofibrous mat: comparison of the accuracy of GMDH and RSM models. J Ind Text. https://doi.org/10.1177/1528083719851856

    Article  Google Scholar 

  31. Haque MM-U, Puglia D, Fortunati E, Pracella M (2017) Effect of reactive functionalization on properties and degradability of poly (lactic acid)/poly (vinyl acetate) nanocomposites with cellulose nanocrystals. React Funct Polym 110:1–9

    CAS  Google Scholar 

  32. Beltrán FR, Lorenzo V, de la Orden MU, Martinez-Urreaga J (2016) Effect of different mechanical recycling processes on the hydrolytic degradation of poly (l-lactic acid). Polym Degrad Stab 133:339–348

    Google Scholar 

  33. Tao Y, Xu W, Yan Y, Cao Y (2012) Preparation and characterization of silk fibroin nanocrystals. Polym Int 61:760–767

    CAS  Google Scholar 

  34. Patwa R, Kumar A, Katiyar V (2018) Effect of silk nano-disc dispersion on mechanical, thermal, and barrier properties of poly (lactic acid) based bionanocomposites. J Appl Polym Sci 135:46671

    Google Scholar 

  35. DadrasChomachayi M, Jalali-arani A, Urreaga JM (2020) The effect of silk fibroin nanoparticles on the morphology, rheology, dynamic mechanical properties, and toughness of poly (lactic acid)/poly ($\varepsilon$-caprolactone) nanocomposite. J Appl Polym Sci 137:49232

    CAS  Google Scholar 

  36. Vyazovkin S, Wight CA (1999) Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta 340:53–68

    Google Scholar 

  37. Budrugeac P (2000) The evaluation of the non-isothermal kinetic parameters of the thermal and thermo-oxidative degradation of polymers and polymeric materials: its use and abuse. Polym Degrad Stab 71:185–187

    Google Scholar 

  38. Rockwood DN, Preda RC, Yücel T et al (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6:1612–1631

    CAS  PubMed  Google Scholar 

  39. Nakayama D, Wu F, Mohanty AK et al (2018) Biodegradable composites developed from PBAT/PLA binary blends and silk powder: compatibilization and performance evaluation. ACS Omega 3:12412–12421

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Badia JD, Ribes-Greus A (2016) Mechanical recycling of polylactide, upgrading trends and combination of valorization techniques. Eur Polym J 84:22–39

    CAS  Google Scholar 

  41. Chen E-C, Wu T-M (2007) Isothermal crystallization kinetics and thermal behavior of poly (ɛ-caprolactone)/multi-walled carbon nanotube composites. Polym Degrad Stab 92:1009–1015

    CAS  Google Scholar 

  42. Senthil Muthu Kumar T, Rajini N, Siengchin S et al (2019) Influence of Musa acuminate bio-filler on the thermal, mechanical and visco-elastic behavior of poly (propylene) carbonate biocomposites. Int J Polym Anal Charact 24:439–446

    CAS  Google Scholar 

  43. Tesfaye M, Patwa R, Dhar P, Katiyar V (2017) Nanosilk-grafted poly (lactic acid) films: influence of cross-linking on rheology and thermal stability. ACS Omega 2:7071–7084

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Botta L, Scaffaro R, Sutera F, Mistretta MC (2018) Reprocessing of PLA/graphene nanoplatelets nanocomposites. Polymers (Basel) 10:18

    Google Scholar 

  45. Jamshidian M, Tehrany EA, Imran M et al (2012) Structural, mechanical and barrier properties of active PLA–antioxidant films. J Food Eng 110:380–389

    CAS  Google Scholar 

  46. Starkova O, Buschhorn ST, Mannov E et al (2013) Water transport in epoxy/MWCNT composites. Eur Polym J 49:2138–2148

    CAS  Google Scholar 

  47. Gupta KM, Pawar SJ (2005) A nonlinear diffusion model incorporating edge and surface texture effects to predict absorption behaviour of composites. Mater Sci Eng A 412:78–82

    Google Scholar 

  48. Siracusa V (2012) Food packaging permeability behaviour: a report. Int J Polym Sci. https://doi.org/10.1155/2012/302029

    Article  Google Scholar 

  49. Pillin I, Montrelay N, Bourmaud A, Grohens Y (2008) Effect of thermo-mechanical cycles on the physico-chemical properties of poly (lactic acid). Polym Degrad Stab 93:321–328

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azam Jalali-arani.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadras Chomachayi, M., Jalali-arani, A. & Martínez Urreaga, J. A Comparison of the Effect of Silk Fibroin Nanoparticles and Microfibers on the Reprocessing and Biodegradability of PLA/PCL Blends. J Polym Environ 29, 2585–2597 (2021). https://doi.org/10.1007/s10924-021-02053-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02053-1

Keywords

Navigation