Skip to main content
Log in

Determination of Some Technological Properties of Injection Molded Pulverized-HDPE Based Composites Reinforced with Micronized Waste Tire Powder and Red Pine Wood Wastes

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, the effects of micronized waste tire powder (WTP) and red pine wood waste flours (RPF) concentrations on the properties of pulverized-high density polyethylene (P-HDPE) composites were investigated. Ingredients were first mixed in a high-intensity mixer, later passed through single screw extruder to produce extrudates and finally pelletized and dried before sample manufacturing using injection molding machine. Contrary to the fact that lignocellulosic materials increase the brittleness of composites, the presence of WTP improved hardness and impact properties of lignocellulosic-based composite by making them softer. Both WTP and RPF concentrations have significantly increased density, thickness swelling (TSW) and water absorption of composites. Rising percentage of RPF improved the flexural strength, flexural modulus, tensile strength and tensile modulus values of composites. Addition of WTP, on the other hand, reduced these values. Although the presence of WTP has slightly increased the elongations at break (EatB) values in neat-HDPE, it decreased the EatB values of the composites having RPF in it. Thermal degradation started at 275 °C and 360 °C for RPF and WTP, respectively. With the loading of both fillers in the p-HDPE matrix, melting temperature of composites and crystallinity ratio of the polymer was slightly changed. SEM images showed improved dispersion of RPF due to MAPE usage. Through this study, some technological properties of injection molded P-HDPE based composites reinforced with WTP and RPF were determined and potential utilization of WTP in lignocellulosic-based composites was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Turkish Statistical Institute Report (2018) Land vehicles with the engine. Published date and number: 02 October 2018/27662

  2. LASDER Sector Report (2019) Waste tire in Turkey. https://www.lasder.org.tr/turkiyede-otl/. Accessed 28 Mar 2019

  3. Marques AC, Akasaki JL, Trigo APM, Marques ML (2008) Influence of the surface treatment of tire rubber residues added in mortars. Rev Ibracon Estrut e Mater 1:113–120. https://doi.org/10.1590/s1983-41952008000200001

    Article  Google Scholar 

  4. Bekhiti M, Trouzine H, Asroun A (2014) Properties of waste tire rubber powder. Eng Technol Appl Sci Res 4:669–672

    Google Scholar 

  5. United States Tire Manufactures Association (USTMA) (2018) 2017 U.S. Scrap tire management summary. In: Washingt. DC. https://www.ustires.org/. Accessed 28 Mar 2019

  6. Shanmugharaj AM, Kim JK, Ryu SH (2005) UV surface modification of waste tire powder: characterization and its influence on the properties of polypropylene/waste powder composites. Polym Test 24:739–745. https://doi.org/10.1016/j.polymertesting.2005.04.006

    Article  CAS  Google Scholar 

  7. Lee SH, Shanmugharaj AM, Sridhar V et al (2009) Preparation and characterization of polypropylene and waste tire powder modified by allylamine blends. Polym Adv Technol 20:620–625. https://doi.org/10.1002/pat.1307

    Article  CAS  Google Scholar 

  8. Zhang SL, Zhang ZX, Kim JK (2011) Study on thermoplastic elastomers (TPEs) of waste polypropylene/waste ground rubber tire powder. J Macromol Sci B 50:762–768. https://doi.org/10.1080/00222341003785144

    Article  CAS  Google Scholar 

  9. Lee SH, Balasubramanian M, Kim JK (2007) Dynamic reaction inside co-rotating twin screw extruder. II. Waste ground rubber tire powder/polypropylene blends. J Appl Polym Sci 116:3209–3219. https://doi.org/10.1002/app

    Article  Google Scholar 

  10. Ismail H, Awang M (2008) Natural weathering of polypropylene and waste tire dust (PP/WTD) blends. J Polym Environ 16:147–153. https://doi.org/10.1007/s10924-008-0087-6

    Article  CAS  Google Scholar 

  11. Awang M, Ismail H (2009) Weatherability of polypropylene/waste tire dust blends: effects of trans-polyoctylene rubber and dynamic vulcanization. J Vinyl Addit Technol 1:29–38. https://doi.org/10.1002/vnl

    Article  Google Scholar 

  12. Olhagaray J, Dinzart F, Bouchart V, Lipinski P (2014) Thermomechanical analysis and optimization of thermoplastic elastomer made of polypropylene and waste tire rubber. J Thermoplast Compos Mater 27:958–976

    Article  CAS  Google Scholar 

  13. Kim JK, Lee SH, Paglicawan MA, Balasubramanian M (2007) Effects of extruder parameters and compositions on mechanical properties and morphology of maleic anhydride grafted polypropylene/waste tire blends. Polym-Plast Technol Eng 46:19–29. https://doi.org/10.1080/03602550600916233

    Article  CAS  Google Scholar 

  14. Xin ZX, Zhang ZX, Zhang BS et al (2009) Expanded waste ground rubber tire powder/polypropylene composites: Processing-structure relationships. J Compos Mater 43:3003–3015. https://doi.org/10.1177/0021998309345346

    Article  CAS  Google Scholar 

  15. Xin ZX, Zhang ZX, Pal K et al (2010) Study of microcellular injection-molded polypropylene/waste ground rubber tire powder blend. Mater Des 31:589–593. https://doi.org/10.1016/J.MATDES.2009.07.002

    Article  CAS  Google Scholar 

  16. Jeong KM, Hong YJ, Saha P et al (2014) Novel polymer composites from waste ethylene-propylene-diene-monomer rubber by supercritical CO2 foaming technology. Waste Manage Res 32:1113–1122. https://doi.org/10.1177/0734242X14545375

    Article  CAS  Google Scholar 

  17. Piszczyk L, Hejna A, Danowska M et al (2015) Polyurethane/ground tire rubber composite foams based on polyglycerol: processing, mechanical and thermal properties. J Reinf Plast Compos 34:708–717. https://doi.org/10.1177/0731684415579089

    Article  CAS  Google Scholar 

  18. Zhu J, Zhang X, Liang M, Lu C (2011) Enhancement of processability and foamability of ground tire rubber powder and LDPE blends through solid state shear milling. J Polym Res 18:533–539. https://doi.org/10.1007/s10965-010-9446-9

    Article  CAS  Google Scholar 

  19. Yasin T, Khan S, Nho Y-C, Ahmad R (2012) Effect of polyfunctional monomers on properties of radiation crosslinked EPDM/waste tire dust blend. Radiat Phys Chem 81:421–425. https://doi.org/10.1016/J.RADPHYSCHEM.2011.12.008

    Article  CAS  Google Scholar 

  20. Anis Sakinah ZA, Ratnam CT, Luqman Chuah A, Yaw TCS (2011) Performance of irradiated and crosslinked ethylene vinyl acetate/waste tire dust blend. J Elastom Plast 43:239–256. https://doi.org/10.1177/0095244311398629

    Article  CAS  Google Scholar 

  21. Thevy Ratnam C, Ramarad S, Siddiqui MK et al (2014) Irradiation cross-linking of ethylene vinyl acetate/waste tire dust: effect of multifunctional acrylates. J Thermoplast Compos Mater 29:464–478. https://doi.org/10.1177/0892705713518814

    Article  CAS  Google Scholar 

  22. Sakinah ZAA, Ratnam CT, Chuah AL, Yaw TCS (2009) Effect of mixing conditions on the tensile properties of ethylene vinyl acetate/waste tire dust (EVA/WTD) blend. Polym Plast Technol Eng 48:1139–1142. https://doi.org/10.1080/03602550903147270

    Article  CAS  Google Scholar 

  23. Mészáros L, Bárány T, Czvikovszky T (2012) EB-promoted recycling of waste tire rubber with polyolefins. Radiat Phys Chem 81:1357–1360. https://doi.org/10.1016/J.RADPHYSCHEM.2011.11.058

    Article  Google Scholar 

  24. Ouyang C, Gao Q, Shi Y, Shan X (2012) Compatibilizer in waste tire powder and low-density polyethylene blends and the blends modified asphalt. J Appl Polym Sci 123:485–492. https://doi.org/10.1002/app.34634

    Article  CAS  Google Scholar 

  25. Guo B, Cao Y, Jia D, Qiu Q (2004) Thermoplastic elastomers derived from scrap rubber powder/LLDPE blend with LLDPE-graft-(epoxidized natural rubber) dual compatibilizer. Macromol Mater Eng 289:360–367. https://doi.org/10.1002/mame.200300311

    Article  CAS  Google Scholar 

  26. Wang L, Lang F, Li S et al (2013) Thermoplastic elastomers based on high-density polyethylene and waste ground rubber tire composites compatibilized by styrene–butadiene block copolymer. J Thermoplast Compos Mater 27:1479–1492. https://doi.org/10.1177/0892705712473628

    Article  CAS  Google Scholar 

  27. Mujal-Rosas R, Marin-Genesca M, Orrit-Prat J et al (2011) Dielectric, mechanical, and thermal characterization of high-density polyethylene composites with ground tire rubber. J Thermoplast Compos Mater 25:537–559. https://doi.org/10.1177/0892705711411344

    Article  CAS  Google Scholar 

  28. Hejna A, Klein M, Saeb MR, Formela K (2019) Towards understanding the role of peroxide initiators on compatibilization efficiency of thermoplastic elastomers highly filled with reclaimed GTR. Polym Test 73:143–151. https://doi.org/10.1016/J.POLYMERTESTING.2018.11.005

    Article  CAS  Google Scholar 

  29. Kim JK, Lee SH, Balasubramanian M (2006) A comparative study of effect of compatibilization agent on untreated and ultrasonically treated waste ground rubber tire and polyolefin blends. Polim Ciência e Tecnol 16:263–268. https://doi.org/10.1590/S0104-14282006000400004

    Article  CAS  Google Scholar 

  30. Datta S, Harea D, Harea E, Stoček R (2018) An advanced method for calculation of infrared parameter to quantitatively identify rubber grade in a multi-component rubber blend. Polym Test 73:308–315. https://doi.org/10.1016/j.polymertesting.2018.11.046

    Article  CAS  Google Scholar 

  31. Lainé E, Grandidier JC, Benoit G et al (2019) Effects of sorption and desorption of CO2 on the thermomechanical experimental behavior of HNBR and FKM O-rings - Influence of nanofiller-reinforced rubber. Polym Test 75:298–311. https://doi.org/10.1016/j.polymertesting.2019.02.010

    Article  CAS  Google Scholar 

  32. Li Z, Wang Y, Li X et al (2019) Experimental investigation and constitutive modeling of uncured carbon black filled rubber at different strain rates. Polym Test 75:117–126. https://doi.org/10.1016/j.polymertesting.2019.02.005

    Article  CAS  Google Scholar 

  33. Marković G, Marinović-Cincović M, Jovanović V et al (2013) Characterization of composites based on chlorosulfonated polyethylene rubber/chlorinated natural rubber/waste rubber powder rubber blends. J Thermoplast Compos Mater 28:241–256. https://doi.org/10.1177/0892705713481373

    Article  CAS  Google Scholar 

  34. Shen M, Liu J, Xin Z (2019) Mechanical properties of rubber sheets produced by direct molding of ground rubber tire powder. J Macromol Sci B 58:16–27. https://doi.org/10.1080/00222348.2018.1449798

    Article  CAS  Google Scholar 

  35. Li G, Stubblefield MA, Garrick G et al (2004) Development of waste tire modified concrete. Cem Concr Res 34:2283–2289. https://doi.org/10.1016/j.cemconres.2004.04.013

    Article  CAS  Google Scholar 

  36. Barlaz MA, Eleazer WE, Whittle DJ (1993) Potential to use waste tires as supplemental fuel in pulp and paper mill boilers, cement kilns and in road pavement. Waste Manage Res 11:463–480. https://doi.org/10.1006/WMRE.1993.1050

    Article  CAS  Google Scholar 

  37. Zachariah AK, Chandra AK, Mohammed PK, Thomas S (2019) Vulcanization kinetics and mechanical properties of organically modified nanoclay incorporated natural and chlorobutyl rubber nanocomposites. Polym Test 76:154–165. https://doi.org/10.1016/j.polymertesting.2019.02.003

    Article  CAS  Google Scholar 

  38. Sridhar V, Xiu ZZ, Xu D et al (2009) Fly ash reinforced thermoplastic vulcanizates obtained from waste tire powder. Waste Manage 29:1058–1066. https://doi.org/10.1016/j.wasman.2008.08.013

    Article  CAS  Google Scholar 

  39. Ismail MK, Hassan AAA (2016) Use of metakaolin on enhancing the mechanical properties of self-consolidating concrete containing high percentages of crumb rubber. J Clean Prod 125:282–295. https://doi.org/10.1016/j.jclepro.2016.03.044

    Article  CAS  Google Scholar 

  40. Uygunoǧlu T, Topçu IB (2010) The role of scrap rubber particles on the drying shrinkage and mechanical properties of self-consolidating mortars. Constr Build Mater 24:1141–1150. https://doi.org/10.1016/j.conbuildmat.2009.12.027

    Article  Google Scholar 

  41. Ganesan N, Bharati Raj J, Shashikala AP (2013) Flexural fatigue behavior of self compacting rubberized concrete. Constr Build Mater 44:7–14. https://doi.org/10.1016/j.conbuildmat.2013.02.077

    Article  Google Scholar 

  42. Güneyisi E (2010) Fresh properties of self-compacting rubberized concrete incorporated with fly ash. Mater Struct Constr 43:1037–1048. https://doi.org/10.1617/s11527-009-9564-1

    Article  CAS  Google Scholar 

  43. Bušić R, Ivana M (2018) Application of waste tire powders as substitute materials (fillers) in self-compacting concrete (SCC). In: 6th congress of young researchers in the field of civil engineering and related sciences. Faculty of civil engineering, Architecture and geodesy, University of split, pp 38–45. https://doi.org/10.31534/co/zt.2018.05

  44. Saba N, Tahir PM, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6:2247–2273. https://doi.org/10.3390/polym6082247

    Article  CAS  Google Scholar 

  45. Pǎrpǎriţǎ E, Darie RN, Popescu CM et al (2014) Structure-morphology-mechanical properties relationship of some polypropylene/lignocellulosic composites. Mater Des 56:763–772. https://doi.org/10.1016/j.matdes.2013.12.033

    Article  CAS  Google Scholar 

  46. Zhao J, Wang XM, Chang JM et al (2010) Sound insulation property of wood-waste tire rubber composite. Compos Sci Technol 70:2033–2038. https://doi.org/10.1016/j.compscitech.2010.03.015

    Article  CAS  Google Scholar 

  47. Yang HS, Kim DJ, Lee YK et al (2004) Possibility of using waste tire composites reinforced with rice straw as construction materials. Bioresour Technol 95:61–65. https://doi.org/10.1016/j.biortech.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  48. Jun Z, Xiang-ming W, Jian-min C, Kai Z (2008) Optimization of processing variables in wood-rubber composite panel manufacturing technology. Bioresour Technol 99:2384–2391. https://doi.org/10.1016/j.biortech.2007.05.031

    Article  CAS  PubMed  Google Scholar 

  49. Ayrilmis N, Buyuksari U, Avci E (2009) Utilization of waste tire rubber in the manufacturing of particleboard. Mater Manuf Process 24:688–692. https://doi.org/10.1080/10426910902769376

    Article  CAS  Google Scholar 

  50. Terzi E, Köse C, Büyüksari Ü et al (2009) Evaluation of possible decay and termite resistance of particleboard containing waste tire rubber. Int Biodeterior Biodegrad 63:806–809. https://doi.org/10.1016/j.ibiod.2009.01.010

    Article  CAS  Google Scholar 

  51. Ayrilmis N, Buyuksari U, Avci E (2009) Utilization of waste tire rubber in manufacture of oriented strandboard. Waste Manage 29:2553–2557. https://doi.org/10.1016/j.wasman.2009.05.017

    Article  CAS  Google Scholar 

  52. Zhou Y, Fan M, Chen L, Zhuang J (2015) Lignocellulosic fibre mediated rubber composites: an overview. Composites B 76:180–191. https://doi.org/10.1016/j.compositesb.2015.02.028

    Article  CAS  Google Scholar 

  53. Ismail H, Santiagoo R, Hussin K (2011) Tensile properties, swelling, and water absorption behavior of rice-husk-powder-filled polypropylene/(recycled acrylonitrile-butadiene rubber) composites. J Vinyl Addit Technol 3:190–197. https://doi.org/10.1002/vnl

    Article  Google Scholar 

  54. Santiagoo R, Ismail H, Hussin K (2011) Mechanical properties, water absorption, and swelling behaviour of rice husk powder filled polypropylene/recycled acrylonitrile butadiene rubber (pp/nbrr/rhp) biocomposites using silane as a coupling agent. BioResources 6:3714–3726. https://doi.org/10.15376/biores.6.4.3714-3726

    Article  CAS  Google Scholar 

  55. Santiagoo R, Ismail H, Hussin K (2012) Effects of acetic anhydride on the properties of polypropylene(PP)/recycled acrylonitrile butadiene(NBRr)/rice husk powder(RHP) composites. Polym-Plast Technol Eng 51:1505–1512. https://doi.org/10.1080/03602559.2012.698685

    Article  CAS  Google Scholar 

  56. Zainal M, Santiagoo R, Ayob A, Mustaffa WA (2017) Mechanical properties and chemical reaction of 3-aminopropyltriethoxysilane of polypropylene, recycle acrylonitrile butadiene rubber and sugarcane bagasse composites. Int J Microstruct Mater Prop 12:55–65. https://doi.org/10.1504/IJMMP.2017.087676

    Article  CAS  Google Scholar 

  57. Zainal M, Santiagoo R, Ayob A et al (2019) Thermal and mechanical properties of chemical modification on sugarcane bagasse mixed with polypropylene and recycle acrylonitrile butadiene rubber composite. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705719832072

    Article  Google Scholar 

  58. Ghani AA, Mustafa WA, Rohani MNKH et al (2018) Material treatment of polypropylene (PP) / recycle acrylonitrile butadiene rubber (NBrr) and banana skin powder (BSP) using thermal mixing techniques. J Adv Res Fluid Mech Therm Sci 52:1–11

    Google Scholar 

  59. Affandi RD, Santiagoo R, Kahar AWM, Affandi M (2018) Water absorption behavior of palm kernel shell filled polypropylene/recycled acrylonitrile butadiene rubber composites: effects of γ-methacryloxypropyltrimethoxysilane. J Adv Res Eng Knowl 4:17–25

    Article  Google Scholar 

  60. Pang AL, Ismail H (2014) Influence of kenaf form and loading on the properties of kenaf-filled polypropylene/waste tire dust composites: a comparison study. J Appl Polym Sci 131:2–7. https://doi.org/10.1002/app.40877

    Article  CAS  Google Scholar 

  61. Pang A, Ismail H (2014) Effects of kenaf loading and 3-aminopropyltriethoxysilane coupling agent on the properties of polypropylene/waste tire dust/kenaf composites. J Thermoplast Compos Mater 27:1607–1619. https://doi.org/10.1177/0892705712475002

    Article  CAS  Google Scholar 

  62. Pang AL, Ismail H (2013) Tensile properties, water uptake, and thermal properties of polypropylene/waste pulverized tire/kenaf (PP/WPT/KNF) composites. BioResources 8:806–817. https://doi.org/10.15376/biores.8.1.806-817

    Article  Google Scholar 

  63. Pang AL, Ismail H (2014) Studies on the properties of polypropylene/(waste tire dust)/kenaf (PP/WTD/KNF) composites with addition of phthalic anhydride (PA) as a function of KNF loading. J Vinyl Addit Technol 20:193–200. https://doi.org/10.1002/vnl

    Article  CAS  Google Scholar 

  64. Zedler Ł, Colom X, Saeb MR, Formela K (2018) Preparation and characterization of natural rubber composites highly filled with brewers’ spent grain/ground tire rubber hybrid reinforcement. Composites B 145:182–188. https://doi.org/10.1016/j.compositesb.2018.03.024

    Article  CAS  Google Scholar 

  65. Ramezani Kakroodi A, Kazemi Y, Rodrigue D (2013) Mechanical, rheological, morphological and water absorption properties of maleated polyethylene/hemp composites: Effect of ground tire rubber addition. Composites B 51:337–344. https://doi.org/10.1016/j.compositesb.2013.03.032

    Article  CAS  Google Scholar 

  66. García D, López J, Balart R et al (2007) Composites based on sintering rice husk-waste tire rubber mixtures. Mater Des 28:2234–2238. https://doi.org/10.1016/j.matdes.2006.06.001

    Article  CAS  Google Scholar 

  67. Martins MA, Mattoso LHC (2004) Short sisal fiber-reinforced tire rubber composites: dynamical and mechanical properties. J Appl Polym Sci 91:670–677. https://doi.org/10.1002/app.13210

    Article  CAS  Google Scholar 

  68. Mengeloğlu F, Çavuş V (2019) Additives used in wood plastic composite manufacturing. In: Bozdoğan AM, Yarpuz-Bozdoğan N (eds) Research & reviews in agriculture, forestry and aquaculture sciences, 1st edn. Gece Kitaplığı, Ankara, pp 51–64

    Google Scholar 

  69. Kattas L, Gastrock F, Levin I, Cacciatore A (2000) Plastic additives in modern plastics handbook. The McGraw-Hill Companies, New York

    Google Scholar 

  70. Rowell RM (2006) Advances and challenges of wood polymer composites. In: Yusoff MNM, Poh KM, Jantan MD et al (eds) Proceedings of the 8th Pacific Rim Bio-Based Composites Symposium. Forest Research Institute Malaysia, Kuala Lumpur, Malaysia, pp 2–11

  71. Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    Article  CAS  Google Scholar 

  72. Adusumalli R-B, Weber HK, Roeder T et al (2010) Evaluation of experimental parameters in the microbond test with regard to lyocell fibers. J Reinf Plast Compos 29:2356–2367. https://doi.org/10.1177/0731684409349929

    Article  CAS  Google Scholar 

  73. Gassan J, Bledzki AK (2000) Possibilities to improve the properties of natural fiber reinforced plastics by fiber modification—jute polypropylene composites. Appl Compos Mater 7:373–385. https://doi.org/10.1023/A:1026542208108

    Article  CAS  Google Scholar 

  74. Botros M (2003) The effect of advanced maleic anhydride coupling agents on the performance of wood-plastic Composites. In: Wood-Plastic Composites Conference. Vienna, Austria

  75. Rao J, Zhou Y, Fan M (2018) Revealing the interface structure and bonding mechanism of coupling agent treated WPC. Polymers 10:1–13. https://doi.org/10.3390/polym10030266

    Article  CAS  Google Scholar 

  76. Rybiński P, Syrek B, Masłowski M et al (2018) Influence of lignocellulose fillers on properties natural rubber composites. J Polym Environ 26:2489–2501. https://doi.org/10.1007/s10924-017-1144-9

    Article  CAS  Google Scholar 

  77. Hejna A, Sulyman M, Przybysz M et al (2018) On the correlation of lignocellulosic filler composition with the performance properties of poly(ε-caprolactone) based biocomposites. Waste Biomass Valoriz. https://doi.org/10.1007/s12649-018-0485-5

    Article  Google Scholar 

  78. Çavuş V, Mengeloğlu F (2017) The effect of lignocellulosic filler types and concentrations on the mechanical properties of wood plastic composites produced with polypropylene having various melt flowing index (MFI). Pamukkale Univ J Eng Sci 23:994–999. https://doi.org/10.5505/pajes.2017.80000

    Article  Google Scholar 

  79. Mengeloglu F, Kurt R, Gardner DJ, O’Neill S (2007) Mechanical properties of extruded high density polyethylene and polypropylene wood flour decking boards. Iran Polym J 16:477–487

    CAS  Google Scholar 

  80. Mengeloglu F, Karakus K (2008) Thermal degradation, mechanical properties and morphology of wheat straw flour filled recycled thermoplastic composites. Sensors 8:500–519. https://doi.org/10.3390/s8010500

    Article  CAS  PubMed  Google Scholar 

  81. Mengeloglu F, Kabakci A (2008) Determination of thermal properties and morphology of eucalyptus wood residue filled high density polyethylene composites. Int J Mol Sci 9:107–119. https://doi.org/10.3390/ijms9020107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. ASTM D792 (2008) Standard test methods for density and specific gravity (relative density) of plastics by displacement. ASTM, West Conshohocken

    Google Scholar 

  83. Petkim (2019) Technical Data Sheet for High-Density Polyethylene (HDPE) (Product number: PETILEN YY I668). Accessed March 2019

  84. ASTM D570 (2010) Standard test method for water absorption of plastics. ASTM, West Conshohocken

    Google Scholar 

  85. ASTM D2240 (2017) Standard test method for rubber property-durometer hardness. ASTM, West Conshohocken

    Google Scholar 

  86. ASTM D790 (2010) Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM, West Conshohocken

    Google Scholar 

  87. ASTM D638 (2010) Standard test for tensile properties of plastics. ASTM, West Conshohocken

    Google Scholar 

  88. ASTM D256 (2010) Standard test for determining the izod pendulum impact resistance of plastics. ASTM, West Conshohocken

    Google Scholar 

  89. Kooti M, Naghdi Sedeh A (2013) Microwave-assisted combustion synthesis of ZnO nanoparticles. J Chem. https://doi.org/10.1155/2013/562028

    Article  Google Scholar 

  90. Barique MA, Tsuchida E, Ohira A, Tashiro K (2017) Effect of elevated temperatures on the states of water and their correlation with the proton conductivity of nafion. ACS Omega 3:349–360. https://doi.org/10.1021/acsomega.7b01765

    Article  CAS  Google Scholar 

  91. Li Y, Zhao S, Wang Y (2012) Microbial desulfurization of ground tire rubber by Sphingomonas sp.: a novel technology for crumb rubber composites. J Polym Environ 20:372–380. https://doi.org/10.1007/s10924-011-0386-1

    Article  CAS  Google Scholar 

  92. Karabork F, Pehlivan E, Akdemir A (2014) Characterization of styrene butadiene rubber and microwave devulcanized ground tire rubber composites. J Polym Eng 34:543–554. https://doi.org/10.1515/polyeng-2013-0330

    Article  CAS  Google Scholar 

  93. Zhang X, Lu C, Liang M (2009) Properties of natural rubber vulcanizates containing mechanochemically devulcanized ground tire rubber. J Polym Res 16:411–419. https://doi.org/10.1007/s10965-008-9243-x

    Article  CAS  Google Scholar 

  94. Karabörk F, Akdemir A (2015) Investigation of mechanical properties of SBR in which added devulcanized waste tire rubber with various proportions of DPDS. Pamukkale Univ J Eng Sci 21:123–129. https://doi.org/10.5505/pajes.2014.88609

    Article  Google Scholar 

  95. Naskar AK, De SK, Bhowmick AK et al (2000) Characterization of ground rubber tire and its effect on natural rubber compound. Rubber Chem Technol 73:902–911. https://doi.org/10.5254/1.3547628

    Article  CAS  Google Scholar 

  96. Steckel V, Clemons CM, Thoemen H (2007) Effects of material parameters on the diffusion and sorption properties of wood-flour/polypropylene composites. J Appl Polym Sci 113:752–763. https://doi.org/10.1002/app.25037

    Article  CAS  Google Scholar 

  97. Özdemir F, Serin ZO, Mengeloǧlu F (2013) Utilization of red pepper fruit stem as reinforcing filler in plastic composites. BioResources 8:5299–5308. https://doi.org/10.15376/biores.8.4.5299-5308

    Article  Google Scholar 

  98. Rosa SML, Santos EF, Ferreira CA, Nachtigalt SMB (2009) Studies on the properties of rice-husk-filled-PP composites—effect of maleated pp. Mater Res 12:333–338. https://doi.org/10.1590/S1516-14392009000300014

    Article  CAS  Google Scholar 

  99. Bledzki AK, Reihmane S, Gassan J (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 59:1329–1336. https://doi.org/10.1002/(sici)1097-4628(19960222)59:8%3c1329:aid-app17%3e3.3.co;2-5

    Article  CAS  Google Scholar 

  100. Mohd Ishak ZA, Ariffin A, Senawi R (2001) Effects of hygrothermal aging and a silane coupling agent on the tensile properties of injection molded short glass fiber reinforced poly(butylene terephthalate) composites. Eur Polym J 37:1635–1647. https://doi.org/10.1016/S0014-3057(01)00033-7

    Article  CAS  Google Scholar 

  101. Razavi-Nouri M, Mohammad Jafarzadeh-Dogouri F, Oromiehie A, Langroudi AE (2006) Mechanical properties and water absorption behaviour of chopped rice husk filled polypropylene composites. Iran Polym J 15:757–766

    CAS  Google Scholar 

  102. Ismail H, Mega L, Abdul Khalil HPS (2001) Effect of a silane coupling agent on the properties of white rice husk ash-polypropylene/natural rubber composites. Polym Int 50:606–611. https://doi.org/10.1002/pi.673

    Article  CAS  Google Scholar 

  103. Ismail H, Edyham MR, Wirjosentono B (2002) Bamboo fibre filled natural rubber composites: the effects of filler loading and bonding agent. Polym Test 21:139–144. https://doi.org/10.1016/S0142-9418(01)00060-5

    Article  CAS  Google Scholar 

  104. Mengeloǧlu F, Karakuš K (2008) Some properties of eucalyptus wood flour filled recycled high density polyethylene polymer-composites. Turkish J Agric For 32:537–546. https://doi.org/10.3906/tar-0801-7

    Article  Google Scholar 

  105. Annie Paul S, Boudenne A, Ibos L et al (2008) Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Composites A 39:1582–1588. https://doi.org/10.1016/j.compositesa.2008.06.004

    Article  CAS  Google Scholar 

  106. Nourbakhsh A, Ashori A (2008) Highly fiber-loaded composites: physical and mechanical properties. Polym Polym Compos 16:343–347. https://doi.org/10.1177/096739110801600508

    Article  CAS  Google Scholar 

  107. Woodhams RT, Law S, Balatinecz JJ (1993) Intensive mixing of wood fibers with thermoplastics for injection-molded composites. In: Proc. Wood fiber/polymer composites: fundamental concepts, processes, and material options. Forest Product Society, Madison

  108. Wang Y, Yeh FC, Lai SM et al (2003) Effectiveness of functionalized polyolefins as compatibilizers for polyethylene/wood flour composites. Polym Eng Sci 43:933–945

    Article  CAS  Google Scholar 

  109. Qiu W, Endo T, Hirotsu T (2004) Interfacial interactions of a novel mechanochemical composite of cellulose with maleated polypropylene. J Appl Polym Sci 94:1326–1335. https://doi.org/10.1002/app.21123

    Article  CAS  Google Scholar 

  110. Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibers and their characterization. Ind Crops Prod 23:1–8. https://doi.org/10.1016/j.indcrop.2005.01.006

    Article  CAS  Google Scholar 

  111. Yang HS, Wolcott MP, Kim HS et al (2007) Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites. Compos Struct 79:369–375. https://doi.org/10.1016/j.compstruct.2006.02.016

    Article  Google Scholar 

  112. Karmarkar A, Chauhan SS, Modak JM, Chanda M (2007) Mechanical properties of wood–fiber reinforced polypropylene composites: effect of a novel compatibilizer with isocyanate functional group. Composites A 38:227–233. https://doi.org/10.1016/J.COMPOSITESA.2006.05.005

    Article  Google Scholar 

  113. Yuan Q, Wu D, Gotama J, Bateman S (2008) Wood fiber reinforced polyethylene and polypropylene composites with high modulus and impact strength. J Thermoplast Compos Mater 21:195–208. https://doi.org/10.1177/0892705708089472

    Article  CAS  Google Scholar 

  114. ASTM D6662 (2001) Standard specification for polyolefin-based plastic lumber decking boards. ASTM, West Conshohocken

    Google Scholar 

  115. Donmez Cavdar A, Mengeloʇlu F, Karakus K (2015) Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites. Measurement 60:6–12. https://doi.org/10.1016/j.measurement.2014.09.078

    Article  Google Scholar 

  116. Banat R, Fares MM (2015) Thermo-gravimetric stability of high density polyethylene composite filled with olive Shell flour. Am J Polym Sci 5:65–74. https://doi.org/10.5923/j.ajps.20150503.02

    Article  CAS  Google Scholar 

  117. Scheirs J (2000) Compositional and failure analysis of polymers: a practical approach. Wiley, Hoboken

    Google Scholar 

  118. Fernández-Berridi MJ, González N, Mugica A, Bernicot C (2006) Pyrolysis-FTIR and TGA techniques as tools in the characterization of blends of natural rubber and SBR. Thermochim Acta 444:65–70. https://doi.org/10.1016/j.tca.2006.02.027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank to Orbay Plastik, Kauçuk Geridönüşüm Sanayi LTD.ŞTİ. (Turkey) for donating micronized waste tire powder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Halil Başboğa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Başboğa, İ.H., Atar, İ., Karakuş, K. et al. Determination of Some Technological Properties of Injection Molded Pulverized-HDPE Based Composites Reinforced with Micronized Waste Tire Powder and Red Pine Wood Wastes. J Polym Environ 28, 1776–1794 (2020). https://doi.org/10.1007/s10924-020-01726-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01726-7

Keywords

Navigation