Skip to main content

Advertisement

Log in

Sustainable Use of Chloroprene Rubber Waste as Blend Component with Natural Rubber, Epoxidized Natural Rubber and Styrene Butadiene Rubber

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Recycling of rubber waste and finding the effective methods to extend its use are one of major challenges nowadays. The potential approach to reduce rubber waste is to blend it with virgin rubber, perhaps with synergistic advantages. In this study, chloroprene rubber waste (CRw) is used as blend component in binary blends with natural rubber (NR), epoxidized natural rubber with 50 mol% epoxidation level (ENR50), and styrene butadiene rubber (SBR). The effects of blend ratio [95/5, 85/15, 75/25, 65/35 and 50/50 (phr/phr)] on the properties were studied. The results indicate that CRw prolongs scorch and curing times, due to the differences in unsaturation contents and cure incompatibility. The maximum torque (MH), minimum torque (ML), and torque difference (MH–ML) in all cases increased with CRw content in the blend. Because CRw has a crosslink precursor, crosslink density also increased with CRw content. This is clearly confirmed by the combination of swelling resistance, crosslink density and dynamic mechanical properties observed. SEM micrographs showed mostly rough surface and tearing areas for low CRw contents in the blends. The blends also showed less crack paths with increasing CRw content over 50 phr. Further increase in CRw content obviously enhanced the thermal stability of the blends, with elevated decomposition temperatures in TGA results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alassali A, Fiore S, Kuchta K (2018) Assessment of plastic waste materials degradation through near infrared spectroscopy. Waste Manag 82:71–81

    Article  CAS  PubMed  Google Scholar 

  2. Hou P, Xu Y, Taiebat M, Lastoskie C, Miller SA, Xu M (2018) Life cycle assessment of end-of-life treatments for plastic film waste. J Clean Prod 201:1052–1060

    Article  Google Scholar 

  3. Prathiba R, Shruthi M, Miranda LR (2018) Pyrolysis of polystyrene waste in the presence of activated carbon in conventional and microwave heating using modified thermocouple. Waste Manag 76:528–536

    Article  CAS  PubMed  Google Scholar 

  4. Ghavipanjeh F, Ziaei Rad Z, Pazouki M (2018) Devulcanization of ground tires by different strains of bacteria: optimization of culture condition by taguchi method. J Polym Environ 26:3168–3175

    Article  CAS  Google Scholar 

  5. Rooj S, Basak GC, Maji PK, Bhowmick AK (2011) New route for devulcanization of natural rubber and the properties of devulcanized rubber. J Polym Environ 19:382–390

    Article  CAS  Google Scholar 

  6. Ismail H, Nordin R, Noor AM (2002) The comparison properties of recycle rubber powder, carbon black, and calcium carbonate filled natural rubber compounds. Polym Plast Technol Eng 41:847–862

    Article  CAS  Google Scholar 

  7. Bridgwater ER (1940) Neoprene, the chloroprene rubber. Ind Eng Chem 32:1155–1156

    Article  Google Scholar 

  8. Sae-oui P, Sirisinha C, Hatthapanit K (2007) Effect of blend ratio on aging, oil and ozone resistance of silica-filled chloroprene rubber/natural rubber (CR/NR) blends. Express Polym Lett 1:8–14

    Article  CAS  Google Scholar 

  9. Baker CSL, Gelling IR, Newell R (1985) Epoxidized natural rubber. Rubber Chem Technol 58:67–85

    Article  CAS  Google Scholar 

  10. Ismail H, Leong HC (2001) Curing characteristics and mechanical properties of natural rubber/chloroprene rubber and epoxidized natural rubber/chloroprene rubber blends. Polym Test 20:509–516

    Article  CAS  Google Scholar 

  11. Ramesan MT, Alex R, Khanh NV (2005) Studies on the cure and mechanical properties of blends of natural rubber with dichlorocarbene modified styrene-butadiene rubber and chloroprene rubber. React Funct Polym 62:41–50

    Article  CAS  Google Scholar 

  12. Flory PJ, Rehner J (1943) Statistical mechanics of cross-linked polymer networks II. swelling. J Chem Phys 11:521–526

    Article  CAS  Google Scholar 

  13. Chokanandsombat Y, Sirisinha C (2013) MgO and ZnO as reinforcing fillers in cured polychloroprene rubber. J Appl Polym Sci 128:2533–2540

    Article  CAS  Google Scholar 

  14. Hayeemasae N, Ismail H, Azura AR (2013) Blending of natural rubber/recycled ethylene-propylene-diene monomer: cure behaviors and mechanical properties. Polym Plast Technol Eng 52:501–509

    Article  CAS  Google Scholar 

  15. Rattanasom N, Saowapark T, Deeprasertkul C (2007) Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Test 26:369–377

    Article  CAS  Google Scholar 

  16. George SC, Ninan KN, Groeninickx G, Thomas S (2000) Styrene-butadiene rubber/natural rubber blends: morphology, transport behavior, and dynamic mechanical and mechanical properties. J Appl Polym Sci 78:1280–1303

    Article  CAS  Google Scholar 

  17. Ramesan MT, Mathew G, Kuriakose B, Alex R (2001) Role of dichlorocarbene modified styrene butadiene rubber in compatibilisation of styrene butadiene rubber and chloroprene rubber blends. Eur Polym J 37:719–728

    Article  CAS  Google Scholar 

  18. Poh BT, Ismail H, Quah EH, Chin PL (2001) Cure and mechanical properties of filled SMR L/ENR 25 and SMR L/SBR blends. J Appl Polym Sci 81:47–52

    Article  CAS  Google Scholar 

  19. Nagode JB, Roland CM (1991) Miscible mixtures of polychloroprene and epoxidized polyisoprene. Polymer 32:505–509

    Article  CAS  Google Scholar 

  20. Chakraborty SK, Sabharwal S, Das PK, Sarma KSS, Manjula AK (2011) Electron beam (EB) radiation curing-a unique technique to introduce mixed crosslinks in cured rubber matrix to improve quality and productivity. J Appl Polym Sci 122:3227–3236

    Article  CAS  Google Scholar 

  21. Noriman NZ, Ismail H (2011) The effects of electron beam irradiation on the thermal properties, fatigue life and natural weathering of styrene butadiene rubber/recycled acrylonitrile-butadiene rubber blends. Mater Des 32:3336–3346

    Article  CAS  Google Scholar 

  22. Legorju-Jago K, Bathias C (2002) Fatigue initiation and propagation in natural and synthetic rubbers. Int J Fatigue 24:85–92

    Article  CAS  Google Scholar 

  23. Tomer NS, Delor-Jestin F, Singh RP, Lacoste J (2007) Cross-linking assessment after accelerated ageing of ethylene propylene diene monomer rubber. Polym Degrad Stab 92:457–463

    Article  CAS  Google Scholar 

  24. Aracil I, Font R, Conesa JA, Fullana A (2007) TG-MS analysis of the thermo-oxidative decomposition of polychloroprene. J Anal Appl Pyrolysis 79:327–336

    Article  CAS  Google Scholar 

  25. Kameda T, Watanabe Y, Grause G, Yoshioka T (2008) Dehydrochlorination behavior of polychloroprene during thermal degradation. Thermochim Acta 476:28–32

    Article  CAS  Google Scholar 

  26. Ghosh J, Ghorai S, Bhunia S, Roy M, De D (2018) The role of devulcanizing agent for mechanochemical devulcanization of styrene butadiene rubber vulcanizate. Polym Eng Sci 58:74–85

    Article  CAS  Google Scholar 

  27. Tangudom P, Thongsang S, Sombatsompop N (2014) Cure and mechanical properties and abrasive wear behavior of natural rubber, styrene–butadiene rubber and their blends reinforced with silica hybrid fillers. Mater Des 53:856–864

    Article  CAS  Google Scholar 

  28. Nabil H, Ismail H, Azura AR (2013) Effects of virgin Ethylene-Propylene-Diene-Monomer and its preheating time on the properties of natural rubber/recycled Ethylene-Propylene-Diene-Monomer blends. Mater Des 50:27–37

    Article  CAS  Google Scholar 

  29. Bandyopadhyay S, De PP, Tripathy DK, De SK (1995) Dynamic mechanical spectroscopic studies on the miscibility of polychloroprene-epoxidized natural rubber blend in presence of carbon black filler. Polymer 36:1979–1984

    Article  CAS  Google Scholar 

  30. Jacob M, Francis B, Thomas S, Varughese KT (2006) Dynamical mechanical analysis of sisal/oil palm hybrid fiber-reinforced natural rubber composites. Polym Compos 27:671–680

    Article  CAS  Google Scholar 

  31. Atiqah A, Jawaid M, Sapuan SM, Ishak MR, Alothman OY (2018) Thermal properties of sugar palm/glass fiber reinforced thermoplastic polyurethane hybrid composites. Compos Struct 202:954–958

    Article  Google Scholar 

  32. Arrighi V, McEwen IJ, Qian H, Serrano Prieto MB (2003) The glass transition and interfacial layer in styrene-butadiene rubber containing silica nanofiller. Polymer 44:6259–6266

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Assoc. Prof. Dr. Seppo Karrila for assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil Hayeemasae.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayeemasae, N., Salleh, S.Z. & Ismail, H. Sustainable Use of Chloroprene Rubber Waste as Blend Component with Natural Rubber, Epoxidized Natural Rubber and Styrene Butadiene Rubber. J Polym Environ 27, 2119–2130 (2019). https://doi.org/10.1007/s10924-019-01503-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01503-1

Keywords

Navigation