Skip to main content
Log in

Use of Different Proteins to Produce Biodegradable Films and Blends

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The objective of this study was to develop, characterize and evaluate biodegradable films produced from different proteins and their blends. The proteins of hake (Cynoscion guatacupa), obtained by the process of pH variation, as well as gluten and zein proteins were used in this study. The hake protein films (HF) showed the highest tensile strength (TS) and solubility in water, while the gluten films (GF) presented the higher elongation at break comparing to the others. The blend (BL) produced with hake and gluten (BL H/G) showed higher TS, water vapor permeability and elongation (WVP), and lower water solubility than HF. BL H/G still showing good thermal properties and its biodegradability occurred in less than 10 days. The zein film presented more crystalline zones and less mechanical properties when compared to the others. The zein blends with gluten (BL Z/G) presented higher elongation and WVP, and lower solubility when compared to ZF. These changes indicate that the BL Z/G may be an alternative to improve the properties of individual zein films. The BL Z/G showed complete biodegradability in less than 40 days, while the zein films showed about 75% degraded in 60 days. The BL H/G presented good mechanical and thermal resistance, with ΔH superior to the other films, also showed complete biodegradability in less than 10 days, proving to be the most promising blend for the development of sustainable materials for food packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sukhija S, Singh S, Riar CS (2019) J Sci Food Agric. https://doi.org/10.1002/jsfa.9557

    Article  PubMed  Google Scholar 

  2. Sukhija S, Singh S, Riar CS (2018) Polym Compos 39:407–415

    Article  CAS  Google Scholar 

  3. ASTM., 1999. Standards pertaining to the biodegradability and compostability of plastics D20-96, Philadelphia

  4. Gennadios A, Brandenburg AH, Weller CL, Testin RF (1993) J Agric Food Chem 41:1835–1839

    Article  CAS  Google Scholar 

  5. Romani VP, Prentice-Hernández C, Martins VG (2017) Ind Crops Prod 97:268–274

    Article  CAS  Google Scholar 

  6. Hager A, Vallons KJR, Arendt EK (2012) J Agric Food Chem 60:6157–6163

    Article  CAS  PubMed  Google Scholar 

  7. Ozcalik O, Tihminlioglu F (2013) J Food Eng 114:505–513

    Article  CAS  Google Scholar 

  8. Tavares LL, de Almeida CB, Cornélio ÍP, Caruso ML, Lopes Filho JF (2012) Ciênc Tecn Alim 32:314–322

    Article  Google Scholar 

  9. Papalia IS, Londero PMG (2015) Ciênc Rur 45:552–559

    Article  CAS  Google Scholar 

  10. Dong S, Gao A, Zhao Y, Li YT, Chen Y (2017) Food Biop Proc 106:65–74

    Article  CAS  Google Scholar 

  11. Tadpitchayangkoon P, Park JW, Mayer SG, Yongsawatdigul J (2010) J Agric Food Chem 58:4241–4249

    Article  CAS  PubMed  Google Scholar 

  12. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–276

    CAS  PubMed  Google Scholar 

  13. Freitas IR, Gautério GV, Rios DG, Prentice C (2011) J Food Sci Eng 1:374–378

    CAS  Google Scholar 

  14. AOAC (2000) Official methods of analysis, 17th edn. Association of Official Analytical Chemistry, Washingthon, D.C.

    Google Scholar 

  15. Zavareze ER, El Halal SLM, Silva RM, Dias ARG, Prentice-Hernández C (2013) J Food Proc Preser 37:1–9

    Article  CAS  Google Scholar 

  16. Gontard N, Guilbert S, Cuq JL (1992) J Food Sci 58:206–211

    Article  Google Scholar 

  17. Pena-Serna C, Lopes-Filho JF (2013) Mater Chem Phys 142:580–585

    Article  CAS  Google Scholar 

  18. Ma W, Tang CH, Yin SW, Yang XQ, Wang Q, Liu F, Wei ZH (2012) Food Res Int 49:572–579. https://doi.org/10.1016/j.foodres.2012.07.037

    Article  CAS  Google Scholar 

  19. Gontard N, Duchez C, Cuq JL, Guilbert S (1994) Int J Food Sci Tech 29:39–50

    Article  CAS  Google Scholar 

  20. ASTM (2000) Standard test methods for water vapor transmission of material, E96-00. In: Annual Book of ASTM Standards. American Society for Testing and Materials, Philadelphia

  21. ASTM (2002) Standard test methods for tensile properties of thin plastic sheeting, D882-02. In: Annual Book of ASTM Standards. American Society for Testing and Materials, Philadelphia

  22. Piyada K, Waranyou S, Thawien W (2013) Int Food Resear J 20:439–449

    CAS  Google Scholar 

  23. Maran JP, Sivakumar V, Thirugnanasambandham K, Sridhar R (2014) Carb Polym 101:20–28

    Article  CAS  Google Scholar 

  24. Silva N, Junqueira VCA, Silveira NFA (1997) Manual de métodos de análise microbiológica de alimentos. São Paulo, SP

    Google Scholar 

  25. Hernandez-Izquierdo VM, Krochta JM (2008) J Food Sci 73:30–39

    Article  CAS  Google Scholar 

  26. Brandelero RPH, Grossmann MV, Yamashita F (2003) Polím 23:270–275

    Google Scholar 

  27. Ferreira SP, Ruiz W, Gaspar-Cunha A (2014) Revi Ciên Agrár 37:10–19

    Google Scholar 

  28. Yeannes MI, Almandos ME (2003) J Food Compos Anal 16:81–92

    Article  Google Scholar 

  29. Sobral PJA (2000) Pesq Agrop Brasil 35:1251–1259

    Article  Google Scholar 

  30. Kashiri M, Cerisuelo JP, Domínguez I, López-Carballo G, Muriel-Gallet V, Gavara R, Hernández-Muñoz P (2017) Food Hydrocolloids 70:260–268

    Article  CAS  Google Scholar 

  31. Shukla R, Cheryan M (2001) Ind Crops Prod 13:171–192

    Article  CAS  Google Scholar 

  32. Su J, Yuan X, Huang Z, Wang X, Lu X, Zhang L, Wang S (2012) Mater Sci Eng C 32:40–46. https://doi.org/10.1016/j.msec.2011.09.009

    Article  CAS  Google Scholar 

  33. Wihodo M, Moraru CI (2013) J Food Eng 114:292–302

    Article  CAS  Google Scholar 

  34. Ortolan F, Corrêa GP, da Cunha RL, Steel CJ (2017) Food Sci Tech 79:647–654

    CAS  Google Scholar 

  35. Wu Y, Weller CL, Hamouz F, Cuppett SL, Schnepf M (2002) Adv Food Nutr Res 44:347–394

    Article  CAS  PubMed  Google Scholar 

  36. Dangaran K, Tomasula PM, Qi P (2009) Edible films and coatings for food applications. Nova Science Publishers, New York

    Google Scholar 

  37. Cuq B, Gontard N, Cuq JL, Guilbert S (1997) J Agric Food Chem 45:622–626

    Article  CAS  Google Scholar 

  38. Park HJ, Chinnan MS (1995) J Food Eng 25:497–507

    Article  Google Scholar 

  39. Bourtoom T, Chinnan MS (2008) Food Sci Technol 41:1633–1641

    CAS  Google Scholar 

  40. Kokoszka S, Debeaufort F, Lenart A, Voilley A (2010) Int Dairy J 20:53–60

    Article  CAS  Google Scholar 

  41. Hanani ZAN, O’Mahony JA, Roos YH, Oliveira PM, Kerry JP (2014) Food Pack Shelf Life 2:91–101

    Article  Google Scholar 

  42. Romani VP, Martins VG, Vera A, Olsen BD (2018) Food Hydrocolloids 74:307–314

    Article  CAS  Google Scholar 

  43. Huo W, Wei D, Zhu W, Li Z, Jiang Y (2018) J Cereal Sci 79:354–361

    Article  CAS  Google Scholar 

  44. Woggum T, Sirivongpaisal P, Wittaya T (2015) Food Hydrocolloids 50:54–64

    Article  CAS  Google Scholar 

  45. Jouki M, Yazdi FT, Mortazavi SA, Koocheki A (2014) Food Hydrocolloids 36:9–19

    Article  CAS  Google Scholar 

  46. Mothé CG (2009) Análise térmica de materiais. São Paulo

  47. Coutinho FMB, Delpech MC, Alves TL, Ferreira AA (2003) Polym Degrad Stab 81:19–27

    Article  CAS  Google Scholar 

  48. Liu M, Zhou Y, Zhang Y, Yu C, Cao S (2014) Int J Bio Macromol 70:340–346

    Article  CAS  Google Scholar 

  49. Swain SN, Rao KK, Nayak PL (2004) J Appl Polym Sci 93:2590–2596

    Article  CAS  Google Scholar 

  50. Pastor C, Sánchez-González L, Cháfer M, Chiralt M, González-Martínez S (2010) Carbohydr Polym 82:1174–1183

    Article  CAS  Google Scholar 

  51. Gu L, Wang M (2013) Carbohydr Polym 119:288–298

    CAS  Google Scholar 

  52. Ghanbarzadeh B, Oromiehi AR (2008) Int J Biol Macromol 43:209–215

    Article  CAS  PubMed  Google Scholar 

  53. Masamba K, Li Y, Zhong F (2016) Food Pack Shelf Life 10:97–105

    Article  Google Scholar 

  54. Sobral PJA, Menegalli FC, Hubinguer MD, Roques MA (2001) Food Hydrocolloids 15:423–432

    Article  CAS  Google Scholar 

  55. Benavides S, Villalobos-Carvajal R, Reyes JE (2011) J Food Eng 110:232–239

    Article  CAS  Google Scholar 

  56. Villalobos R, Chanona J, Hernández P, Gutiérrez G, Chiralt A (2005) Food Hydrocoll 19:53–61. https://doi.org/10.1016/j.foodhyd.2004.04.014

    Article  CAS  Google Scholar 

  57. Fakhouri FM, Costa D, Yamashita F, Martelli SM, Jesus RC, Alganer K, Collares-Queiroz FP, Innocentini-Mei LH (2013) Carbohydr Polym 95:681–689

    Article  CAS  PubMed  Google Scholar 

  58. Arancibia MY, Lopez-Caballero E, Gómez-Guillen MC, Montero P (2014) Food Control 44:7–15

    Article  CAS  Google Scholar 

  59. Medina-Jaramillo C, Gutiérrez TJ, Goyanes S, Bernal C, Famá L (2016) Carbohydr Polym 151:150–159

    Article  CAS  PubMed  Google Scholar 

  60. Medina-Jaramillo C, Ochoa-Yepes O, Bernal C, Famá L (2017) Carbohydr Polym 176:187–194

    Article  CAS  PubMed  Google Scholar 

  61. Bashir A, Jabeen S, Gull N, Islam A, Sultan M, Ghaffar A, Khan SM, Iqbal SS, Jamil T (2018) Int J Biol Macromol 106:351–359

    Article  CAS  PubMed  Google Scholar 

  62. Nguyen DM, Do TVV, Grillet AC, Ha-Thuc H, Ha-Thuc CN (2016) Int Biodeterior Biodegrad 115:257–265

    Article  CAS  Google Scholar 

  63. Albertsson AC (1980) Eur Polym J 16:623–630

    Article  CAS  Google Scholar 

  64. Otake Y, Kobayashi T, Ashabe H, Murakami N, Ono K (1995) J Appl Polym Sci 56:1789–1796

    Article  CAS  Google Scholar 

  65. Colussi R, Pinto VZ, El Halal SLM, Biduski B, Prietto L, Castilhos DD, Zavareze ER, Dias ARG (2017) Food Chem 221:1614–1620

    Article  CAS  PubMed  Google Scholar 

  66. González A, Strumia MC, Igarzabal CIA (2011) J Food Eng 06:331–338

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. The authors also acknowledge the Programa de Apoio à Publicação da Produção Acadêmica/PROPESP/FURG/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilásia Guimarães Martins.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogueira, D., Martins, V.G. Use of Different Proteins to Produce Biodegradable Films and Blends. J Polym Environ 27, 2027–2039 (2019). https://doi.org/10.1007/s10924-019-01494-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01494-z

Keywords

Navigation