Skip to main content
Log in

Efficient Acetylation of Xylans by Exploiting the Potassium Acetate Formed During the Alkaline Extraction

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Isolation of hemicelluloses through alkaline extraction results in formation of salts, which usually necessitates additional salt removal steps. In this study, acetylation of xylans was studied without the removal of potassium acetate (KAc), a commonly produced salt during the alkaline extraction, to find a facile method to alter the hydrophilic characteristics of hemicelluloses. The acetylation reaction was carried out solely with acetic anhydride without any catalysts or solvents added. The weight gain and ATR–FTIR analyses verified the acetylation of xylans in the presence of KAc. A significant decrease in water solubility and moisture uptake was observed upon acetylation in the presence of KAc which is also accompanied by an increase in thermal stability, disclosing an easy, efficient and environmentally friendly method to obtain hydrophobically modified xylans without the use of toxic catalysts and costly salt purification steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ebringerová A, Thomas H (2005) Adv Polym Sci 186:1–67

    Article  CAS  Google Scholar 

  2. Benko Z, Andersson A, Szengyel Z, Gáspár M, Réczey K, Stålbrand H (2007) Appl Biochem Biotechnol 137–140:253–265

    PubMed  Google Scholar 

  3. Bahcegul E, Toraman HE, Ozkan N, Bakir U (2012) Bioresour Technol 103:440–445

    Article  CAS  PubMed  Google Scholar 

  4. Panthapulakkal S, Pakharenko V, Sain M (2013) J Polym Environ 21:917–929

    Article  CAS  Google Scholar 

  5. Bazus A, Rigal L, Gaset A, Fontaine T, Wieruszeski JM, Fournet B (1993) Carbohydr Res 243:323–332

    Article  CAS  PubMed  Google Scholar 

  6. Mikkonen KS, Heikkinen S, Soovre A, Peura M, Serimaa R, Hyvo L, Talja RA, Hele HJ (2009) Appl Polym Sci 114:457–466

    Article  CAS  Google Scholar 

  7. Fundador NGV, Enomoto-Rogers Y, Takemura A, Iwata T (2012) Carbohydr Polym 87:170–176

    Article  CAS  Google Scholar 

  8. Bahcegul E, Toraman HE, Erdemir D, Akinalan B, Ozkan N, Bakir U (2014) RSC Adv 4:34117–34126

    Article  CAS  Google Scholar 

  9. Gröndahl M, Eriksson L, Gatenholm P (2004) Biomacromolecules 5:1528–1535

    Article  CAS  PubMed  Google Scholar 

  10. Escalante A, Gonçalves A, Bodin A, Stepan A, Sandström C, Toriz G, Gatenholm P (2012) Carbohydr Polym 87:2381–2387

    Article  CAS  Google Scholar 

  11. Ebringerová A, Heinze T (2000) Macromol Rapid Commun 21:542–556

    Article  Google Scholar 

  12. Peresin MS, Kammiovirta K, Setälä H, Tammelin T (2012) J Polym Environ 20:895–904

    Article  CAS  Google Scholar 

  13. Ren J, Peng X, Zhong L, Peng F, Sun R (2012) Carbohydr Polym 89:152–157

    Article  CAS  Google Scholar 

  14. Ren JL, Sun RC, Peng F (2008) Polym Degrad Stab 93:786–793

    Article  CAS  Google Scholar 

  15. Fang JM, Sun R, Fowler P, Tomkinson J, Hill CAS (1999) J Appl Polym Sci 74:2301–2311

    Article  CAS  Google Scholar 

  16. Sun RC, Fang JM, Tomkinson J (2000) Polym Degrad Stab 67:345–353

    Article  CAS  Google Scholar 

  17. Plackett D (2011) Biopolymers: new materials for sustainable films and coatings. Wiley, Chichester

    Book  Google Scholar 

  18. Stepan AM, King AWT, Kakko T, Toriz G, Kilpeläinen I, Gatenholm P (2013) Cellulose 20:2813–2824

    Article  CAS  Google Scholar 

  19. Sato H, Uraki Y, Kishimoto T, Sano Y (2003) Cellulose 10:397–404

    Article  CAS  Google Scholar 

  20. Zhang G, Huang K, Jiang X, Huang D, Yang Y (2013) Carbohydr Polym 96:218–226

    Article  CAS  PubMed  Google Scholar 

  21. Xu C, Leppänen AS, Eklund P, Holmlund P, Sjöholm R, Sundberg K, Willför S (2010) Carbohydr Res 345:810–816

    Article  CAS  PubMed  Google Scholar 

  22. Egüés I, Stepan AM, Eceiza A, Toriz G, Gatenholm P, Labidi J (2014) Carbohydr Polym 102:12–20

    Article  CAS  PubMed  Google Scholar 

  23. Sun XF, Sun RC, Sun JX (2004) Bioresour Technol 95:343–350

    Article  CAS  PubMed  Google Scholar 

  24. Sun XF, Sun RC, Sun JX (2002) Agric Food Chem 50:6428–6433

    Article  CAS  Google Scholar 

  25. Ren JL, Sun RC, Liu CF, Cao ZN, Luo W (2007) Carbohydr Polym 70:406–414

    Article  CAS  Google Scholar 

  26. Özmen N, Çetin NS, Mengeloğlu F, Birinci E, Karakuş K (2013) BioResources 8:753–767

    Article  Google Scholar 

  27. Obataya E, Minato K (2008) Wood Sci Technol 42:567–577

    Article  CAS  Google Scholar 

  28. Zilliox C, Debeire P (1998) Enzyme Microb Technol 22:58–63

    Article  CAS  Google Scholar 

  29. Westbye P, Köhnke T, Glasser W, Gatenholm P (2007) Cellulose 14:603–613

    Article  CAS  Google Scholar 

  30. Eremeeva TE, Bykova TO (1993) J Chromatogr 639:159–164

    Article  CAS  Google Scholar 

  31. Brienzo M, Siqueira AF, Milagres AMF (2009) Biochem Eng J 46:199–204

    Article  CAS  Google Scholar 

  32. Stefke B, Windeisen E, Schwanninger M, Hinterstoisser B (2008) Anal Chem 80:1272–1279

    Article  CAS  PubMed  Google Scholar 

  33. Rana AK, Basak RK, Mitra BC, Lawther M, Banerjee AN (1997) J Appl Polym Sci 64:1517–1523

    Article  CAS  Google Scholar 

  34. Gupta S, Madan RN, Bansal MC (1987) Tappi J 70:113–114

    CAS  Google Scholar 

  35. Kacurakova M, Ebringerova A, Hirsch J, Hromadkova Z (1994) J Sci Food Agric 66:423–427

    Article  CAS  Google Scholar 

  36. Smith B (1998) Infrared spectral interpretation: a systematic approach. CRC Press, Boca Raton

    Google Scholar 

  37. Riquelme N, Díaz-Calderón P, Enrione J, Matiacevich S (2015) Food Chem 175:478–484

    Article  CAS  PubMed  Google Scholar 

  38. Bayazeed A, Farag S, Shaarawy S, Hebeish A (1998) Starch 50:89–93

    Article  CAS  Google Scholar 

  39. Jeon YS, Lowell AV, Gross RA (1999) Starch 51:90–93

    Article  CAS  Google Scholar 

  40. Hill CAS, Ormondroyd GA (2004) Holzforschung 58:544–547

    CAS  Google Scholar 

  41. Gröndahl M, Teleman A, Gatenholm P (2003) Carbohydr Polym 52:359–366

    Article  Google Scholar 

  42. Akkus M, Bahcegul E, Ozkan N, Bakir U (2014) RSC Adv 4:62295–62300

    Article  CAS  Google Scholar 

  43. Stevanic JS, Bergström EM, Gatenholm P, Berglund L, Salmén L (2012) J Mater Sci 47:6724–6732

    Article  CAS  Google Scholar 

  44. Aburto J, Alric I, Thiebaud S, Borredon E, Bikiaris D, Prinos J, Panayiotou C (1999) J Appl Polym Sci 74:1440–1451

    Article  CAS  Google Scholar 

  45. Fundador NGV, Enomoto-Rogers Y, Takemura A, Iwata T (2012) Polymer 53:3885–3893

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present study was funded by METU Scientific Research Projects via Grant Number BAP-07-02-2014-007-191. The authors would like to acknowledge METU Central Laboratory for thermal degradation analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Necati Ozkan or Ufuk Bakir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkus, M., Ozkan, N. & Bakir, U. Efficient Acetylation of Xylans by Exploiting the Potassium Acetate Formed During the Alkaline Extraction. J Polym Environ 26, 3397–3403 (2018). https://doi.org/10.1007/s10924-018-1221-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1221-8

Keywords

Navigation