Skip to main content

Advertisement

Log in

Utilization of Waste Lignin and Hydrolysate From Chromium Tanned Waste in Blends of Hot-Melt Extruded PVA-Starch

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The demand for biodegradable plastic material is increasing worldwide. However, the cost remains high in comparison with common forms of plastic. Requirements comprise low cost, good UV-stability and mechanical properties, as well as solubility and water uptake lead to the preparation of multi-component polymer blends based on polyvinyl alcohol and starch in combination with waste products that are hard to utilize—waste lignin and hydrolysate extracted from chromium tanned waste. Surprisingly the addition of such waste products into PVA gives rise to blends with better biodegradability than commercial PVA in an aquatic aerobic environment with non-adapted activated sludge. These blends also exhibited greater solubility in the water and UV stability than commercial PVA. Tests on the processing properties of the blends (melt flow index, tensile strength and elongation at break of the films) as well as their mechanical properties showed that materials based on these blends might be applied in agriculture (for example as the systems for controlled-release pesticide or fertilizer) and, somewhat, in the packaging sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mohanty AK, Misra M, Hinrichsen G (2000) Macromol Mater Eng 276:1–24

    Article  Google Scholar 

  2. Kupec J, Charvatova K, Kresalkova M (2003) Chem Listy 97:155–159

    CAS  Google Scholar 

  3. Hjermstad TE, Coughlin LJ (1972) US Patent Office 3,652,542

  4. Lawton JW (1996) Carbohyd Polym 29:203–208

    Article  CAS  Google Scholar 

  5. Ishigaki T, Kawagoshi Y, Ike M, Fujita M (1999) World J Microb Biot 15:321–327

    Article  CAS  Google Scholar 

  6. Cinelli P, Chiellini E, Lawton JW, Imam SH (2006) Polym Degrad Stabil 91:1147–1155

    Article  CAS  Google Scholar 

  7. Guohua Z, Ya L, Cuilan F, Min Z, Caiqiong Z, Zongdao C (2006) Polym Degrad Stab 91:703–711

    Article  Google Scholar 

  8. Mendieta-Taboada O, Sobral PJD, Carvalho RA, Habitante AMBQ (2008) Food Hydrocolloids 22:1485–1492

    Article  CAS  Google Scholar 

  9. Chiellini E, Cinelli P, Corti A, Kenawy ER (2001) Polym Degrad Stab 73:549–555

    Article  CAS  Google Scholar 

  10. Liao H, Shi K, Peng J, Qu Y, Liao J, Qian Z (2015) J Nanosci Nanotechnol 15:4188–4192

    Article  CAS  Google Scholar 

  11. Hoffmann J, Řezníčková I, Kozáková J, Růžička J, Alexy P, Bakoš D, Precnerová L (2003) Polym Degrad Stab 79:511–519

    Article  CAS  Google Scholar 

  12. Langmaier F, Mokrejs P, Kolomaznik K, Mládek M (2008) Waste Manage 28:549–556

    Article  CAS  Google Scholar 

  13. Su JF, Yuan XY, Huang Z, Xia WL (2010) Polym Degrad Stab 95:1226–1237

    Article  CAS  Google Scholar 

  14. Katoh K, Shibayama M, Tanabe T, Yamauchi K (2004) J Appl Polym Sci 91:756–762

    Article  CAS  Google Scholar 

  15. Shen Z, Ghasemlou M, Kamdem DP (2015) J Appl Polym Sci 132:41354

    Google Scholar 

  16. Monasterio N, Leiza JR, Meaurio E, Sarasua JR (2015) J Appl Polym Sci 132:41745–41745

    Article  Google Scholar 

  17. Fan XD, Hsieh YL, Kruchta JM (2002) J Appl Polym Sci 83:929–935

    Article  CAS  Google Scholar 

  18. Huang MH, Yang MC (2008) Int J Pharmaceut 346:38–46

    Article  CAS  Google Scholar 

  19. Kaczmarek H, Dabrowska A, Vukovic-Kwiatkowska I (2011) J Appl Polym Sci 122:1936–1945

    Article  CAS  Google Scholar 

  20. Fishman ML, Coffin DR, Onwulata CI, Willett JL (2006) Carbohyd Polym 65:421–429

    Article  CAS  Google Scholar 

  21. Stoica-Guzun A, Jecu L, Gheorghe A, Raut I, Stroescu M, Ghiurea M, Danila M, Jipa I, Fruth V (2011) J Polym Environ 19:69–79

    Article  CAS  Google Scholar 

  22. Park JS, Park JW, Ruckenstein E (2001) J Appl Polym Sci 80:1825–1834

    Article  CAS  Google Scholar 

  23. Liu D, Sun X, Tian H, Maiti S, Ma Z (2013) Cellulose 20:2981–2989

    Article  CAS  Google Scholar 

  24. Tanaka T, Lu T, Yuasa S, Yamaura K (2001) Polym Int 50:1103–1108

    Article  CAS  Google Scholar 

  25. Yee TW, Sin LT, Rahman WA, Samad AA (2011) J Compos Mater 45:2199–2209

    Article  CAS  Google Scholar 

  26. El-Hefian EA, Nasef MM, Yahaya AH (2011) J Chem 8:91–96

    CAS  Google Scholar 

  27. Wang S, Ren J, Li W, Sun R, Liu S (2014) Carbohyd Polym 103:94–99

    Article  CAS  Google Scholar 

  28. Elizondo NJ, Sobral PJA, Menegalli FC (2009) Carbohyd Polym 75:592–598

    Article  CAS  Google Scholar 

  29. Corradini E, Pineda EAG, Hechenleitner AAW (1999) Polym Degrad Stab 66:199–208

    Article  CAS  Google Scholar 

  30. Fernandes DM, Hechenleitner AAW, Job AE, Radovanocic E, Pineda EAG (2006) Polym Degrad Stab 91:1192–1201

    Article  CAS  Google Scholar 

  31. Cinelli P, Chiellini E, Gordon SH, Imam SH (2003) Macromol Symp 197:143–155

    Article  CAS  Google Scholar 

  32. Cascone MG, Barbani N, Cristallini C, Giusti P, Ciardelli G, Lazzeri L (2001) J Biomater Sci Polym 12:267–281

    Article  CAS  Google Scholar 

  33. Kubo S, Kadla JF (2003) Biomacromolecules 4:561–567

    Article  CAS  Google Scholar 

  34. Alexy P, Bakos D, Crkonova G, Kolomaznik K, Krsiak M (2001) Macromol Symp 170:41–50

    Article  CAS  Google Scholar 

  35. Crkoňová G, Alexy P, Bakoš D, Kolomazník K, Šimková B, Prencnerová L (2001) Macromol Symp 170:51–59

    Article  Google Scholar 

  36. Sudhamani SR, Prasad MS, Sankar KU (2003) Food Hydrocolloids 17:245–250

    Article  CAS  Google Scholar 

  37. Sreekumar PA, Al-Harthi MA, De SK (2012) J Appl Polym Sci 123:135–142

    Article  CAS  Google Scholar 

  38. Zhang W, Yang X, Li C, Liang M, Lu C, Deng Y (2011) Carbohyd Polym 83:257–263

    Article  CAS  Google Scholar 

  39. Lee YM, Kim SH, Kim SJ (1996) Polymer 37:5897–5905

    Article  Google Scholar 

  40. Björkman A (1956) Svensk Papperstidn 59:477–485

    Google Scholar 

  41. Gregorová A, Cibulková Z, Košíková B, Šimon P (2005) Polym Degrad Stab 89:553–558

    Article  Google Scholar 

  42. Alexy P, Bakos D, Crkonova G, Kramarova Z, Hoffmann J, Julinova M, Chiellini E, Cinelli P (2003) Polym Test 22:811–818

    Article  CAS  Google Scholar 

  43. Janacova D, Taylor MM, Kolamaznik K, Mladek M, Langmaier F (2000) J Am Leather Chem As 95:55

    Google Scholar 

  44. Ibrahim H, Farag M, Megahed H, Mehanny S (2014) Carbohyd Polym 101:11–19

    Article  CAS  Google Scholar 

  45. Bullock CM, Bicho PA, Zhang Y, Saddler JN (1996) Water Res 30:1280–1284

    Article  CAS  Google Scholar 

  46. ISO 15705 (2002) Water quality—Determination of the chemical oxygen demand—Small-scale dealer-tube method. Czech Standards Institute, Prague

    Google Scholar 

  47. El-Hadi A, Schnabel R, Straube E, Müller G, Henning S (2002). Polym Test 21:665–674

    Article  CAS  Google Scholar 

  48. Nwufo BT, Griffin GL, Ekpenyong KI (1984) Ind Eng Chem Prod Res Dev 23:594–595

    Article  CAS  Google Scholar 

  49. Alexy P, Bakoš D, Hanzelová S, Kukolíková L, Kupec J, Charvátová K, Chiellini E (2003) P Cinelli Polym Test 22:801–809

    Article  CAS  Google Scholar 

  50. Jiang X, Jiang T, Gan L, Zhang X, Dai H, Zhang X (2012) Carbohyd Polym 90:1677–1684

    Article  CAS  Google Scholar 

  51. Fortunati E, Puglia D, Monti M, Santulli C, Maniruzzaman M, Kenny JM (2013) J Appl Polym Sci 128:3220–3230

    Article  CAS  Google Scholar 

  52. Sionkowska A, Płanecka A, Kozłowska J, Skopińska-Wiśniewska J (2009) Polym Degrad Stabil 94:383–388

    Article  CAS  Google Scholar 

  53. Azahari NA, Othman N, Ismail H (2011) J Phys Sci 22:15–31

    CAS  Google Scholar 

  54. Skokanova M, Dercova K (2008) Chem Listy 102:262–268

    CAS  Google Scholar 

  55. Spiridon I, Popescu MC, Bodârlău R, Vasile C (2008) Polym Degrad Stab 93:1884–1890

    Article  CAS  Google Scholar 

  56. Yun YH, Wee YJ, Byun HS, Yoon SD (2008) J Polym Environ 16:12–18

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by an internal grant from Tomas Bata University in Zlin, no. IGA/FT/2016/012 and by projects of the Ministry of Education, Youth, and Sports of the Czech Republic within the NPU I program (contract grant number LO1504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markéta Julinová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Julinová, M., Slavík, R., Vyoralová, M. et al. Utilization of Waste Lignin and Hydrolysate From Chromium Tanned Waste in Blends of Hot-Melt Extruded PVA-Starch. J Polym Environ 26, 1459–1472 (2018). https://doi.org/10.1007/s10924-017-1050-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1050-1

Keywords

Navigation