Skip to main content
Log in

Development of Anti-bacterial PVA/Starch Based Hydrogel Membrane for Wound Dressing

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Wound infection is the primary challenge in the wound care management. To facilitate patients, the health care sector is trying to use the modern technology in the field of wound management. Various cellular processes and biological environments are intertwined in the process of wound repair. The compulsion for the modern dressing is not only to cover the wound but also to facilitate the healing rate of wound. In this research, the hydrogel membranes were prepared by crosslinking poly vinyl alcohol (PVA) with starch by using glutaraldehyde. Turmeric was added as an anti-bacterial agent. 0.5 g of turmeric showed the highest anti-bacterial activity among different turmeric contents used. For physical and mechanical characterization, the hydrogel membrane without turmeric (neat hydrogel) and 0.5 g were selected. FTIR of both hydrogel membranes confirmed the presence of free hydroxyl groups. Moreover, hydrogel membrane containing turmeric resulted stronger hydrogen bond interaction. Mechanical analysis of hydrogel membrane revealed sufficient strength to be used as wound dressing. The SEM images evolved that both hydrogel membranes were dense in nature. The swelling behavior values were greater than 100% for both hydrogel membranes. The water vapor transmission rate for 0.5 g turmeric hydrogel membrane was 52.85 g/m2h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ATR:

Attenuated total reflection

GA:

Glutaraldehyde

HCl:

Hydrochloric acid

FTIR:

Fourier transform infrared spectroscopy

UTM:

Universal testing machine

PVA:

Polyvinyl alcohol

SEM:

Scanning electron microscopy

WVT:

Water vapor transmission

References

  1. Membrane technology in the chemical industry—membrane solutions. http://www.nylon66membrane.com/Membrane-Technology-In-The-Chemical-Industry.html. Accessed 22 Jul 2016

  2. Michaels A (1990) Proceedings of the symposium on membrane technology membranes, membrane processes, and their applications: needs, unsolved problems, and challenges of the 1990’s. Desalination 77:5–34. doi:10.1016/0011-9164(90)85018-6

    Article  CAS  Google Scholar 

  3. Martin C, Low WL, Amin MCIM, et al (2013) Current trends in the development of wound dressings, biomaterials and devices. Pharm Pat Anal 2:341–359. doi:10.4155/ppa.13.18

    Article  CAS  Google Scholar 

  4. Kopeček J (2009) Hydrogels from soft contact lenses and implants to self-assembled nanomaterials. J Polym Sci Part A 47:5929–5946. doi:10.1002/pola.23607

    Article  Google Scholar 

  5. Kamoun EA, Chen X, Mohy Eldin MS, Kenawy E-RS (2015) Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers. Arab J Chem 8:1–14. doi:10.1016/j.arabjc.2014.07.005

    Article  CAS  Google Scholar 

  6. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267. doi:10.1016/j.eurpolymj.2014.11.024

    Article  Google Scholar 

  7. Hwang M-R, Kim JO, Lee JH et al (2010) Gentamicin-loaded wound dressing with polyvinyl alcohol/dextran hydrogel: gel characterization and in vivo healing evaluation. AAPS PharmSciTech 11:1092–1103. doi:10.1208/s12249-010-9474-0

    Article  CAS  Google Scholar 

  8. Gould L, Abadir P, Brem H et al (2015) Chronic wound repair and healing in older adults: current status and future research. J Am Geriatr Soc 63:427–438. doi:10.1111/jgs.13332

    Article  Google Scholar 

  9. Church D, Elsayed S, Reid O et al (2006) Burn wound infections. Clin Microbiol Rev 19:403–434. doi:10.1128/CMR.19.2.403-434.2006

    Article  Google Scholar 

  10. Kunal P, Banthia AK, Majumdar DK (2006) Starch based hydrogel with potential biomedical application as artificial skin. Afr J Biomed Res 9:23–29

    Google Scholar 

  11. Edwards J (2010) Hydrogels and their potential uses in burn wound management. Br J Nurs 19:S12, S14–16. doi:10.12968/bjon.2010.19.Sup4.48419

    Article  Google Scholar 

  12. Pal K, Banthia AK, Majumdar DK (2006) Preparation of transparent starch based hydrogel membrane with potential application as wound dressing. Trends Biomater Artif Organs 20:59–67

    Google Scholar 

  13. Mohamed NA, Fahmy MM (2012) Synthesis and antimicrobial activity of some novel cross-linked chitosan hydrogels. Int J Mol Sci 13:11194–11209. doi:10.3390/ijms130911194

    Article  CAS  Google Scholar 

  14. Kamoun EA, Kenawy E-RS, Tamer TM et al (2015) Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation. Arab J Chem 8:38–47. doi:10.1016/j.arabjc.2013.12.003

    Article  CAS  Google Scholar 

  15. Yang JM, Su WY, Leu TL, Yang MC (2004) Evaluation of chitosan/PVA blended hydrogel membranes. J Membr Sci 236:39–51. doi:10.1016/j.memsci.2004.02.005

    Article  CAS  Google Scholar 

  16. Pal K, Banthia AK, Majumdar DK (2008) Effect of heat treatment of starch on the properties of the starch hydrogels. Mater Lett 62:215–218. doi:10.1016/j.matlet.2007.04.113

    Article  CAS  Google Scholar 

  17. Demir A, Cevher E (2011) Biopolymers as wound healing materials: challenges and new strategies. In: Pignatello R (ed) Biomaterials applications for nanomedicine. InTech, pp 383–414. doi:10.5772/25177

  18. Niazi MBK, Zijlstra M, Broekhuis AA (2013) Spray drying thermoplastic starch formulations: need for processing aids and plasticizers? Eur Polym J 49:1861–1870. doi:10.1016/j.eurpolymj.2013.04.016

    Article  CAS  Google Scholar 

  19. Kenawy E-R, Kamoun EA, Mohy Eldin MS, El-Meligy MA (2014) Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: synthesis and characterization for biomedical applications. Arab J Chem 7:372–380. doi:10.1016/j.arabjc.2013.05.026

    Article  CAS  Google Scholar 

  20. Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. In: Biopolymers. PVA hydrogels, anionic polymerisation nanocomposites. Springer, Heidelberg, pp 37–65

  21. Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Controlled Release 119:5–24. doi:10.1016/j.jconrel.2007.01.004

    Article  CAS  Google Scholar 

  22. Vieira MGA, da Silva MA, dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47:254–263. doi:10.1016/j.eurpolymj.2010.12.011

    Article  CAS  Google Scholar 

  23. Mukhtar S, Ghori I (2012) Antibacterial activity of aqueous and ethanolic extracts of garlic, cinnamon and turmeric against Escherichia coli ATCC 25922 and bacillus subtilis DSM 3256. http://www.ijabpt.com/Details.aspx?id=568

  24. Tayyem RF, Heath DD, Al-Delaimy WK, Rock CL (2006) Curcumin content of turmeric and curry powders. Nutr Cancer 55:126–131. doi:10.1207/s15327914nc5502_2

    Article  CAS  Google Scholar 

  25. Boonkaew B, Suwanpreuksa P, Cuttle L, et al (2014) Hydrogels containing silver nanoparticles for burn wounds show antimicrobial activity without cytotoxicity. J Appl Polym Sci 131:40215. doi:10.1002/app.40215

    Article  Google Scholar 

  26. Cano A, Fortunati E, Cháfer M et al (2015) Effect of cellulose nanocrystals on the properties of pea starch–poly(vinyl alcohol) blend films. J Mater Sci 50:6979–6992. doi:10.1007/s10853-015-9249-9

    Article  CAS  Google Scholar 

  27. Singh B, Sharma S, Dhiman A (2013) Design of antibiotic containing hydrogel wound dressings: biomedical properties and histological study of wound healing. Int J Pharm 457:82–91. doi:10.1016/j.ijpharm.2013.09.028

    Article  CAS  Google Scholar 

  28. Bialik-Was k, Tyliszczak B, Wilk E, Pielichowski K (2013) Preparation of innovative hydrogel wound dressing based on poly (acrylic acid). CHEMIK 67(2):99–104

    CAS  Google Scholar 

  29. Pal K, Banthia AK, Majumdar DK (2007) Preparation and characterization of polyvinyl alcohol-gelatin hydrogel membranes for biomedical applications. AAPS PharmSciTech 8:E142–E146. doi:10.1208/pt080121

    Article  Google Scholar 

  30. SOP—tensile testing of electrospun nanofiber membrane. http://electrospintech.com/SOP-ES2002.html#.V3WRGqJ5LFt. Accessed 30 Jun 2016

  31. Roy N, Saha N, Kitano T, et al (2011) Effectiveness of polymer sheet layer to protect hydrogel dressings. In: Starov V, Procházka K (eds) Trends in colloid and interface science XXIV. Springer, Heidelberg, pp 127–130

  32. Hago E-E, Li X (2013) Interpenetrating polymer network hydrogels based on gelatin and PVA by biocompatible approaches: synthesis and characterization. Adv Mater Sci Eng 2013:1–8. doi:10.1155/2013/328763

    Article  Google Scholar 

  33. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a000414

    Google Scholar 

  34. Chemistry4life (2011) Chemistry4Life: factors affecting the polymer’s properties: Chemistry4Life

  35. Parnell EA (1844) Applied chemistry: in manufactures, arts, and domestic economy. Taylor and Walton, London

  36. Veronda DR, Westmann RA (1970) Mechanical characterization of skin-finite deformations. J Biomech 3:111–124

    Article  CAS  Google Scholar 

  37. Fan L, Yang H, Yang J et al (2016) Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydr Polym 146:427–434. doi:10.1016/j.carbpol.2016.03.002

    Article  CAS  Google Scholar 

  38. Nilsson G (1977) On the measurement of evaporative water loss: methods and clinical applications. Linköping Medical University, Linköping

  39. Ballantyne B, Myers RC (2001) The acute toxicity and primary irritancy of glutaraldehyde solutions. Vet Hum Toxicol 43:193–202

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by National University of Sciences and Technology (NUST), Islamabad, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Bilal Khan Niazi.

Ethics declarations

Conflict of interest

There is no conflict of interest statement in the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, A., Niazi, M.B.K., Hussain, A. et al. Development of Anti-bacterial PVA/Starch Based Hydrogel Membrane for Wound Dressing. J Polym Environ 26, 235–243 (2018). https://doi.org/10.1007/s10924-017-0944-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-0944-2

Keywords

Navigation