Skip to main content
Log in

Modulation of Biodegradation Rate of Poly(lactic acid) by Silver Nanoparticles

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The control of biodegradation rate is even more important than the characteristic of biodegradability itself. This is the reason why it is critical to find additives able to modulate the biodegradation rate of biodegradable polymers in relationship to the expected lifetime. This paper reports the effects of silver nanoparticles (AgNP) on the biodegradation behavior of the poly(lactic acid) (PLA). Different amounts of AgNP (0.01; 0.07; 0.12 wt%) were melt mixed with a commercial PLA in order to analyze their effect on the composites properties. The composites were submitted to biodegradation tests in controlled composting conditions, according to ASTM D 5338 and ISO14855 standards. Thermal properties of PLA and composites were analyzed at different biodegradation times. The aim was the tuning of the biodegradation rate of PLA by the addition of silver nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D’Arcy N (2001) Antimicrobials in plastics: a global review. Plast Addit Compd 3:12–15

    Article  Google Scholar 

  2. Holley S, Gastrock F, Ice ML (2002) Antimicrobial plastics additives: trends and latest developments in North America. Plast Addit Compd 4:18–21

    Google Scholar 

  3. Russell AD, Hugo WB (1994) 7 Antimicrobial activity and action of silver. In: Ellis GP, Luscombe DK (eds) Progress in medicinal chemistry. Elsevier, Amsterdam, pp 351–370

    Google Scholar 

  4. Holt KB, Bard AJ (2005) Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44:13214–13223

    Article  CAS  Google Scholar 

  5. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  6. Pillai SK, Ray SS, Scriba M, Ojijo V, Hato MJ (2013) Morphological and thermal properties of photodegradable biocomposite films. J Appl Polym Sci 129:362–370

    Article  CAS  Google Scholar 

  7. Fortunati E, Armentano I, Iannoni A, Kenny JM (2010) Development and thermal behaviour of ternary PLA matrix composites. Polym Degrad Stab 95:2200–2206

    Article  CAS  Google Scholar 

  8. Shameli K, Ahmad MB, W Md Zin Wan Yunus, Ibrahim NA, Rahman RA, Jokar M, Darroudi M (2010) Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. Int J Nanomed 5:573–579

    Article  CAS  Google Scholar 

  9. Xu X, Yang Q, Wang Y, Yu H, Chen X, Jing X (2006) Biodegradable electrospun poly(l-lactide) fibers containing antibacterial silver nanoparticles. Eur Polym J 42:2081–2087

    Article  CAS  Google Scholar 

  10. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  11. Rasal R, Janorkar A, Hirt D (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356

    Article  CAS  Google Scholar 

  12. Bordes P, Averous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125–155

    Article  CAS  Google Scholar 

  13. Stloukal P, Kalendova A, Mattausch H, Laske S, Holzer C, Koutny M (2015) The influence of a hydrolysis-inhibiting additive on the degradation and biodegradation of PLA and its nanocomposites. Polym Test 41:124–132

    Article  CAS  Google Scholar 

  14. Gorrasi G, Pantani R (2013) Effect of polylactic acid grades and morphologies on hydrolytic degradation at composting temperature: assessment of structural modification and kinetic parameters. Polym Degrad Stab 98:1006–1014

    Article  CAS  Google Scholar 

  15. Pantani R, De Santis F, Sorrentino A, De Maio F, Titomanlio G (2010) Crystallization kinetics of virgin and processed poly(lactic acid). Polym Degrad Stab 95:1148–1159

    Article  CAS  Google Scholar 

  16. Pillin I, Montrelay N, Bourmaud A, Grohens Y (2008) Effect of thermo-mechanical cycles on the physico-chemical properties of poly(lactic acid). Polym Degrad Stab 93:321–328

    Article  CAS  Google Scholar 

  17. Speranza V, De Meo A, Pantani R (2014) Thermal and hydrolytic degradation kinetics of PLA in the molten state. Polym Degrad Stab 100:37–41

    Article  CAS  Google Scholar 

  18. Pantani R, Sorrentino A (2013) Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polym Degrad Stab 98:1089–1096

    Article  CAS  Google Scholar 

  19. Russell AD, Hugo WB (1994) 7 Antimicrobial activity and action of silver. In: Progress in medicinal chemistry, pp 351–370

  20. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Pantani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorrasi, G., Sorrentino, A. & Pantani, R. Modulation of Biodegradation Rate of Poly(lactic acid) by Silver Nanoparticles. J Polym Environ 23, 316–320 (2015). https://doi.org/10.1007/s10924-015-0720-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-015-0720-0

Keywords

Navigation